Skip to main content
Log in

Polarization splitter based on dual-core photonic crystal fiber with octagonal lattice

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The polarization characteristics of a photonic crystal fiber with octagonal lattice are evaluated by using the finite element method. The coupled-mode theory between two cores is introduced. A novel high extinction ratio and short length polarization splitter based on dual-core octagonal photonic crystal fiber is designed in this paper. Numerical results show that the extinction ratio at the wavelength of 1.55 µm can reach to −175.01 dB, and the bandwidth as the extinction ratio as low as −15 dB is about 82 nm. Besides, a 0.8518-mm-long photonic crystal fiber is better applied to the polarization beam splitter at the communication band of λ = 1.55 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aliramezani, M., Nejad, S.M.: Numerical analysis and optimization of a dual-concentric-core photonic crystal fibers for broadband dispersion compensation. Opt. Laser Technol. 42, 1209–1217 (2010)

    Article  ADS  Google Scholar 

  • Birks, T.A., Knight, J.C., Russell, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  • Broderick, N.G.R., Monro, T.M., Bennett, P.J., Richardson, D.J.: Nonlinearity in holey optical fibers: measurement and future opportunities. Opt. Lett. 24, 1395–1397 (1999)

    Article  ADS  Google Scholar 

  • Buczynski R, Szarniak P, Pysa D, Kujawa I: Double-core photonic crystal fiber with square lattice. Proc Spie 5450, 1–8 (2004)

    Article  Google Scholar 

  • Chen, H.L., Li, S.G., Fan, Z.K.: A novel polarization splitter based on dual-core photonic crystal fiber with a liquid crystal modulation core. IEEE Photonics J. 6, 1–9 (2014a)

    Google Scholar 

  • Chen, H.L., Li, S.G., Cheng, T.L.: Polarization splitter based on three core photonic crystal fiber with rectangle lattice. J. Mod. Opt. 61, 1696–1701 (2014b)

    Article  ADS  Google Scholar 

  • Chiang, J.S., Wu, T.L.: Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF). Opt. Commun. 258, 170–176 (2006)

    Article  ADS  Google Scholar 

  • Chiang, J.S., et al.: Analysis of an ultrashort PCF-Based polarization splitter. J. Lightwave Technol. 28, 707–713 (2010)

    Article  ADS  Google Scholar 

  • Fan, Z.K., Li, S.G., Zhang, W.: Analysis of the polarization beam splitter in two communication bands based on ultrahigh birefringence dual-core tellurite glass photonic crystal fiber. Opt. Commun. 333, 26–31 (2014)

    Article  ADS  Google Scholar 

  • Florous, N., Saitoh, K., Koshiba, M.: A novel polarization splitter based on the photonic crystal fiber splitters with polarization independent propagation characteristics. Opt. Express 13, 7365–7373 (2005)

    Article  ADS  Google Scholar 

  • Fujisawa, T., Saitoh, K., Wada, K., Koshiba, M.: Chromatic dispersion profile optimzation of dual-concentric-core photonic crystal fibers for broadband dispersion compensation. Opt. Express 14, 893–900 (2006)

    Article  ADS  Google Scholar 

  • Galan, J.V., Sanchis, P., Garcia, J., Blasco, J., Martinez, A., Marti, J.: Study of asymmetric silicon cross-slot waveguides for polarization-diversity loop configuration. Appl. Opt. 48, 2693–2696 (2009)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A.: Coupling characteristics of dual liquid crystal crystal core soft glass photonic crystal fiber. IEEE J. Quantum Electron. 47, 1283–1290 (2011)

    Article  ADS  Google Scholar 

  • Hansen, T.P., Broeng, J., Libori, S.E.B., Knudsen, E., Bjarklev, A., Jensen, J.R., Simonwen, H.: Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technol. Lett. 13, 588–590 (2001)

    Article  ADS  Google Scholar 

  • Hoque, M.N., Sayeem, A., Akter, N.: Octagonal photonic crystal fibers: application to ultra-flattened dispersion. Aust. J. Basic Appl. Sci. 4, 2274–2279 (2010)

    Google Scholar 

  • Koshiba, M.: Full vector analysis of photonic crystal fibers using the finite element method. IEICE Trans. Electron. E85-C4, 881–888 (2002)

    Google Scholar 

  • Kraus, S., Lucki, M.: Structural tolerances of optical characteristics in various types of photonic lattices. Adv. Electr. Electron. Eng. 12, 245–251 (2014)

    Google Scholar 

  • Lee, Y.W., Han, K.J., Lee, B., Jung, J.: Polarization independent all-fiber multiwavelength-switchable filter based on a polarization-diversity loop configuration. Opt. Express 11, 3359–3364 (2003)

    Article  ADS  Google Scholar 

  • Li, J., Duan, K., Wang, Y.: Design of a single-polarization single-mode photonic crystal fiber double-core coupler. Opt. Int. J. Light Electron Opt. 120, 490–496 (2009)

    Article  Google Scholar 

  • Li, S.S., Zhang, H., Hou, Y., Bai, J.J.: Terahertz polarization splitter based on orthogonal microstructure dual-core photonic crystal fiber. Appl. Opt. 52, 3305–3310 (2013)

    Article  ADS  Google Scholar 

  • Lu, W.L., Lou, S.Q., Wang, X., Wang, L.W., Feng, R.J.: Ultrabroadband polarization splitter based on three-core photonic crystal fibers. Appl. Opt. 52, 449–455 (2013)

    Article  ADS  Google Scholar 

  • Mao, D., Guan, C.Y., Yuan, L.B.: Polarization splitter based on interference effects in all-solid photonic crystal fibers. Appl. Opt. 49, 3748–3752 (2010)

    Article  ADS  Google Scholar 

  • Ortigosa Blanch, A., Knight, J.C., Wadsworth, W.J., Arriaga, J., Mangan, B.J., Birks, T.A., Russell, P.S.J.: Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000)

    Article  ADS  Google Scholar 

  • Saitoh, K., Sato, Y., Koshiba, M.: Coupling characteristics of dual-core photonic crystal couplers. Opt. Express 11, 3188–3195 (2003)

    Article  ADS  Google Scholar 

  • Saulnier, J., Ramus, C., Huet, F., Carre, M.: Optical polarization-diversity receiver integrated on titanium-diffused lithium niobate. IEEE Photonics Technol. Lett. 3, 926–928 (1991)

    Article  ADS  Google Scholar 

  • Sun, B., Chen, M., Zhou, J., Zhang, Y.: Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire. Plasmonics 8, 1253–1258 (2013)

    Article  Google Scholar 

  • Wu, D.K.C., Kuhlmey, B.T., Eggleton, B.J.: Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 34, 322–324 (2009)

    Article  ADS  Google Scholar 

  • Zhang, L., Yang, C.: Polarization splitter based on photonic crystalfibers. Opt. Express 11, 1015–1020 (2003)

    Article  ADS  Google Scholar 

  • Zhang, L., Yang, C., Yu, C., Luo, T., Willner, A.E.: PCF-based polarization splitters with simplified structures. J. Lightwave Technol. 23, 3558–3565 (2005)

    Article  ADS  Google Scholar 

  • Zhao, L., Su, Z., Hao, Y.: Analysis of high birefringence photonic crystal fiber with octagonal and squarely lattice. Opt. Int. J. Light Electron Opt. 124, 6574–6576 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Project supported by the National Natural Science Foundation of China (Grant Nos. 61178026, 61475134 and 61505175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, S., Chen, H. et al. Polarization splitter based on dual-core photonic crystal fiber with octagonal lattice. Opt Quant Electron 48, 271 (2016). https://doi.org/10.1007/s11082-016-0545-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0545-7

Keywords

Navigation