Skip to main content
Log in

Influence of the geometry of terahertz chiral metamaterial on transmission group delays

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Recently, group delay has been proven as a very convenient tool for control of terahertz electromagnetic signals used for filters, waveguides and polarization components. Here, we investigate the propagation of circularly polarised terahertz pulse via analysis of group delays in Ω particle chiral metamaterial. When varying the geometry of the Ω particle chiral metamaterial, significant modification of chiroptical effects—optical activity and circular dichroism can be observed. Through the analysis of group delays in the frequency region between 1 and 3 THz we conclude that the right circularly polarised wave is more sensitive to changes in the geometry than the left circularly polarised wave. This result implies that the right circularly polarised wave is responsible for variation of chiroptical effects in these structures and opens up a possibility for potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barron, L.D.: Molecular Light Scattering and Optical Activity. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  • Decker, M., Zhao, R., Soukoulis, C., Linden, S., Wegener, M.: Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt. Lett. 35(10), 1593–1595 (2010)

    Article  ADS  Google Scholar 

  • Fan, Z., Govorov, A.O.: Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett. 10(7), 2580–2587 (2010)

    Article  ADS  Google Scholar 

  • Ferguson, B., Zhang, X.C.: Terahertz magnetic response from artificial materials. Nat. Mater. 1, 26–33 (2002)

    Article  ADS  Google Scholar 

  • Gansel, J.K., Thiel, M., Rill, M.S., Decker, M., Bade, K., Saile, V., von Freymann, G., Linden, S., Wegener, M.: Gold helix photonic metamaterial as broadband circular polarizer. Science 325(5947), 1513–1515 (2009)

    Article  ADS  Google Scholar 

  • Gorkunov, M., Ezhov, A., Artemov, V., Rogov, O., Yudin, S.: Extreme optical activity and circular dichroism of chiral metal hole arrays. Appl. Phys. Lett. 104(22), 221102 (2014)

    Article  ADS  Google Scholar 

  • Hauge, E.H., Støvneng, J.A.: Tunneling times: a critical review. Rev. Mod. Phys. 61, 917–936 (1989)

    Article  ADS  Google Scholar 

  • Jaggard, D., Mickelson, A., Papas, C.: On electromagnetic waves in chiral media. Appl. Phys. 18(2), 211–216 (1979)

    Article  ADS  Google Scholar 

  • Kenanakis, G., Zhao, R., Stavrinidis, A., Konstantinidis, G., Katsarakis, N., Kafesaki, M., Soukoulis, C., Economou, E.: Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs. Opt. Mater. Express 2(12), 1702–1712 (2012)

    Article  Google Scholar 

  • Li, Z., Mutlu, M., Ozbay, E.: Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission. J. Opt. 15(2), 023001 (2013)

    Article  ADS  Google Scholar 

  • Luan, P., Wang, Y.T., Zhang, S., Zhang, X.: Electromagnetic energy density in a single-resonance chiral metamaterial. Opt. Lett. 36(5), 675–677 (2011)

    Article  ADS  Google Scholar 

  • Miyamaru, F., Hiroki, M., Nishiyama, Y., Nishida, T., Nakanishi, T.,  Kitano, M., Takeda, M.W.: Ultrafast optical control of group delay of narrow-band terahertz waves. Sci. Rep. 4, 43461 (2014)

  • Ordal, M.A., Bell, R.J., Alexander, R., Long, L., Querry, M.: Optical properties of fourteen metals in the infrared and far infrared: Al Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24(24), 4493–4499 (1985)

    Article  ADS  Google Scholar 

  • Pendry, J.B.: A chiral route to negative refraction. Science 306, 1353–1355 (2004)

    Article  ADS  Google Scholar 

  • Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Article  ADS  Google Scholar 

  • Solymar, L., Shamonina, E.: Waves in Metamaterials. Oxford University Press, Oxford (2009)

    Google Scholar 

  • Wang, B., Zhou, J., Koschny, T., Kafesaki, M., Soukoulis, C.M.: Chiral metamaterials: simulations and experiments. J. Opt. A 11, 114003 (2009)

    Article  ADS  Google Scholar 

  • Winful, H.G.: Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox. Phys. Rep. 436(12), 1–69 (2006)

    Article  ADS  Google Scholar 

  • Yen, T.J., Padilla, W.J., Fang, N., Vier, D.C., Smith, D.R., Pendry, J.B., Basov, D.N., Zhang, X.: Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004)

    Article  ADS  Google Scholar 

  • Zhang, C., Cui, T.J.: Negative reflections of electromagnetic waves in a strong chiral medium. Appl. Phys. Lett. 91, 194101 (2007)

    Article  ADS  Google Scholar 

  • Zhao, R., Koschny, T., Soukoulis, C.: Chiral metamaterials: retrieval of the effective parameters with and without substrate. Opt. Express 18(14), 14553–14567 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Serbian Ministry of Education and Science through Projects III 45005 and III 45010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danka B. Stojanović.

Additional information

This article is part of the Topical Collection on Advances in the Science of Light.

Guest Edited by Jelena Radovanovic, Milutin Stepić, Mikhail Sumetsky, Mauro Pereira, and Dragan Indjin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanović, D.B., Radovanović, J. & Milanović, V. Influence of the geometry of terahertz chiral metamaterial on transmission group delays. Opt Quant Electron 48, 272 (2016). https://doi.org/10.1007/s11082-016-0533-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0533-y

Keywords

Navigation