Skip to main content
Log in

General formula for calculation of amplified spontaneous emission intensity

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A general formula is proposed for calculating the intensity of amplified spontaneous emission (ASE) in low, medium and high intensity regimes for both homogeneous and inhomogeneous line broadening. The calculation of ASE intensity is based on the results that are obtained from the numerical solution of the rate equations. The results compared with the corrected Linford formula in low intensities and asymptotic limiting formula for the high gain saturation. An error analysis over the entire region of the gain length product is also given to evaluate the validity of the proposed formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al’miev, I.R., Larroche, O., Benredjem, D., Dubau, J., Kazamias, S., Möller, C., Klisnick, A.: Dynamical description of transient X-ray lasers seeded with high-order harmonic radiation through Maxwell-Bloch numerical simulations. Phys. Rev. Lett. 99, 123902 (2007)

    Article  ADS  Google Scholar 

  • Andreasen, J., Cao, H.: Numerical study of amplified spontaneous emission and lasing in random media. Phys. Rev. A 82, 063835 (2010)

    Article  ADS  Google Scholar 

  • Basu, S., Hagelstein, P.L.: Design analysis of a short wavelength laser in an unstable resonator cavity. J. Appl. Phys. 69, 1853–1861 (1991)

    Article  ADS  Google Scholar 

  • Cao, H., Xu, J.Y., Chang, S.-H., Ho, S.T.: Transition from amplified spontaneous emission to laser action in strongly scattering media. Phys. Rev. E 61, 1985–1989 (2000)

    Article  ADS  Google Scholar 

  • Casperson, L.W.: Threshold characteristics of mirrorless lasers. Appl. Phys. 48, 256–262 (1977)

    Article  Google Scholar 

  • Espindola, R.P., Ales, G., Park, J., Strasser, T.A.: 80 nm spectrally flattened, high power erbium amplified spontaneous emission fibre source. Elect. Lett. 36, 1263–1265 (2000)

    Article  Google Scholar 

  • Ganiel, U., Hardy, A., Neumaw, G., Treves, D.: Amplified spontaneous emission and in signal amplification in dye-laser systems. IEEE J. Quant. Electron. 11, 881–892 (1975)

    Article  ADS  Google Scholar 

  • Gorjan, M., North, T., Rochette, M.: Model of the amplified spontaneous emission generation in thulium-doped silica fibers. J. Opt. Soc. Am. B 29, 2886–2890 (2012)

    Article  ADS  Google Scholar 

  • Haag, G., Munz, M., Marowsky, G.: Amplified spontaneous emission (ASE) in laser oscillators and amplifiers. IEEE J. Quant. Electron. 19, 1149–1160 (1983)

    Article  ADS  Google Scholar 

  • Hung, Y.C., Su, C.H., Huang, H.W.: Low threshold amplified spontaneous emission from dye-doped DNA biopolymer. Appl. Phys. 111, 113107 (2012)

    Article  Google Scholar 

  • Itatani, J., Faure, J., Nantel, M., Mourou, G., Watanabe, S.: Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection. Opt. Commun. 148, 70–74 (1998)

    Article  ADS  Google Scholar 

  • Kim, C.M., Janulewicz, K.A., Kim, H.T., Lee, J.: Amplification of a high-order harmonic pulse in an active medium of a plasma-based X-ray laser. Phys. Rev. A 80, 053811 (2009)

    Article  ADS  Google Scholar 

  • Kim, C.M., Lee, J., Janulewicz, K.A.: Coherent amplification of an ultrashort pulse in a high- and swept-gain medium with level degeneracy. Phys. Rev. Lett. 104, 053901 (2010)

    Article  ADS  Google Scholar 

  • Larroche, O., Ros, D., Klisnick, A., Sureau, A., Möller, C., Guennou, H.: Maxwell-Bloch modeling of X-ray-laser-signal buildup in single- and double-pass configurations. Phys. Rev. A 62, 043815 (2000)

    Article  ADS  Google Scholar 

  • Linford, J., Peressini, E.R., Sooy, W.R., Spaeth, M.L.: Very long lasers. Appl. Opt. 13, 379–390 (1974)

    Article  ADS  Google Scholar 

  • Oliva, E., Zeitoun, P., Fajardo, M., Lambert, G., Ros, D., Sebban, S., Velarde, P.: Comparison of natural and forced amplification regimes in plasma-based soft-X-ray lasers seeded by high-order harmonics. Phys. Rev. A 84, 013811 (2011)

    Article  ADS  Google Scholar 

  • Siegman, A.E.: Lasers. University Science Books, California (1986)

    Google Scholar 

  • Svelto, O.: Principles of Lasers, 4th edn. Springer, New York (1998)

    Book  Google Scholar 

  • Svelto, O., Taccheo, S., Svelto, C.: Analysis of amplified spontaneous emission: some corrections to the Linford formula. Opt. Commun. 149, 277–282 (1998)

    Article  ADS  Google Scholar 

  • Sznitko, L., Mysliwiec, J., Karpinski, P., Palewska, K., Parafiniuk, K., Bartkiewicz, S., Rau, I., Kajzar, F., Miniewicz, A.: Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing. Appl. Phys. Lett. 99, 031107 (2011)

    Article  ADS  Google Scholar 

  • Tallents, G.J.: The physics of soft X-ray lasers pumped by electron collisions in laser plasmas. J. Phys. D Appl. Phys. 36, R259–R276 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Farahbod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghani Moghadam, G., Farahbod, A.H. General formula for calculation of amplified spontaneous emission intensity. Opt Quant Electron 48, 227 (2016). https://doi.org/10.1007/s11082-016-0505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0505-2

Keywords

Navigation