Skip to main content
Log in

Collective processes in a large atomic laser cooling experiment

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We introduce an hydrodynamic description of a laser cooled gas. In large traps, with as much as \(10^{10}\) atoms, multiple scattering of light leads to a collective interaction field which can be described by a Poisson-like equation, included in our formulation. A behaviour similar to a one-component trapped plasma should then be observed. By considering equilibrium conditions we extract the theoretical atomic density profiles and, in particular, its dependence on the effective plasma frequency of the system. The model is compared with experimentally measured profiles with an extraordinary agreement, thus corroborating both the plasma nature of the dynamics in the gas as well as the validity of the hydrodynamic formulation introduced here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995). http://www.sciencemag.org/content/269/5221/198.full.pdf

  • Barrett, M.D., Sauer, J.A., Chapman, M.S.: All-optical formation of an atomic Bose–Einstein condensate. Phys. Rev. Lett. 87, 010404 (2001)

    Article  ADS  Google Scholar 

  • Bohmer, C.G., Harko, T.: Can dark matter be a Bose–Einstein condensate? J. Cosmol. Astropart. Phys. 2007, 025 (2007)

    Article  Google Scholar 

  • Camara, A., Kaiser, R., Labeyrie, G.: Scaling behavior of a very large magneto-optical trap. Phys. Rev. A 90, 063404 (2014)

    Article  ADS  Google Scholar 

  • Chabrier, G., Douchin, F., Potekhin, A.Y.: Dense astrophysical plasmas. J. Phys. Condens. Matt. 14, 9133–9139 (2002)

    Article  ADS  Google Scholar 

  • Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  ADS  Google Scholar 

  • Dalibard, J.: Laser cooling of an optically thick gas: The simplest radiation pressure trap? Opt. Commun. 68, 203–208 (1988)

    Article  ADS  Google Scholar 

  • Dodonov, V.V., Mendonça, J.: Dynamical Casimir effect in ultra-cold matter with a time-dependent effective charge. Phys. Scr. 2014, 014008 (2014)

    Article  Google Scholar 

  • Fletcher, R.S., Zhang, X.L., Rolston, S.L.: Observation of collective modes of ultracold plasmas. Phys. Rev. Lett. 96, 105003 (2006)

    Article  ADS  Google Scholar 

  • Gallagher, T.F., Pillet, P., Robinson, M.P., Laburthe-Tolra, B., Noel, M.W.: Back and forth between Rydberg atoms and ultracold plasmas. J. Opt. Soc. Am. B 20, 1091–1097 (2003)

    Article  ADS  Google Scholar 

  • Ichimaru, S.: Nuclear fusion in dense plasmas. Rev. Mod. Phys. 65, 255–299 (1993)

    Article  ADS  Google Scholar 

  • Killian, T.C., Kulin, S., Bergeson, S.D., Orozco, L.A., Orzel, C., Rolston, S.L.: Creation of an ultracold neutral plasma. Phys. Rev. Lett. 83, 4776–4779 (1999)

    Article  ADS  Google Scholar 

  • Killian, T.C., Lim, M.J., Kulin, S., Dumke, R., Bergeson, S.D., Rolston, S.L.: Formation of Rydberg atoms in an expanding ultracold neutral plasma. Phys. Rev. Lett. 86, 3759–3762 (2001)

    Article  ADS  Google Scholar 

  • Killian, T.C.: Ultracold neutral plasmas. Science 316, 705–708 (2007)

    Article  ADS  Google Scholar 

  • Killian, T., Pattard, T., Pohl, T., Rost, J.: Ultracold neutral plasmas. Phys. Rep. 449, 77–130 (2007)

    Article  ADS  Google Scholar 

  • Kim, K., Noh, H.-R., Jhe, W.: Measurements of trap parameters of a magneto-optical trap by parametric resonance. Phys. Rev. A 71, 033413 (2005)

    Article  ADS  Google Scholar 

  • Kulin, S., Killian, T.C., Bergeson, S.D., Rolston, S.L.: Plasma oscillations and expansion of an ultracold neutral plasma. Phys. Rev. Lett. 85, 318–321 (2000)

    Article  ADS  Google Scholar 

  • Leggett, A.J.: Bose–Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73, 307–356 (2001)

    Article  ADS  Google Scholar 

  • Lett, P.D., Phillips, W.D., Rolston, S.L., Tanner, C.E., Watts, R.N., Westbrook, C.I.: Optical molasses. J. Opt. Soc. Am. B 6, 2084–2107 (1989)

    Article  ADS  Google Scholar 

  • Li, W., Tanner, P.J., Gallagher, T.F.: Dipole–dipole excitation and ionization in an ultracold gas of Rydberg atoms. Phys. Rev. Lett. 94, 173001 (2005)

    Article  ADS  Google Scholar 

  • Mazevet, S., Collins, L.A., Kress, J.D.: Evolution of ultracold neutral plasmas. Phys. Rev. Lett. 88, 055001 (2002)

    Article  ADS  Google Scholar 

  • Mendonça, J., Kaiser, R., Terças, H., Loureiro, J.: Collective oscillations in ultracold atomic gas. Phys. Rev. A 78, 013408 (2008)

    Article  ADS  Google Scholar 

  • Mendonça, J.: Collective oscillations of ultracold matter. Phys. Rev. A 81, 023421 (2010)

    Article  ADS  Google Scholar 

  • Mendonça, J., Terças, H., Brodin, G., Marklund, M.: A phonon laser in ultra-cold matter. Europhys. Lett. 91, 33001 (2010)

    Article  ADS  Google Scholar 

  • Mendonça, J.T., Kaiser, R.: Photon bubbles in ultracold matter. Phys. Rev. Lett. 108, 033001 (2012)

    Article  ADS  Google Scholar 

  • Mendonça, J., Terças, H.: Physics of Ultra-Cold Matter, vol. 70. Spring Series on Atomic, Optical and Plasma Physics, Berlin (2012)

    Google Scholar 

  • Pohl, T., Pattard, T., Rost, J.M.: Coulomb crystallization in expanding laser-cooled neutral plasmas. Phys. Rev. Lett. 92, 155003 (2004)

    Article  ADS  Google Scholar 

  • Preston, D.W.: Doppler-free saturated absorption: laser spectroscopy. Am. J. Phys. 64, 1432–1436 (1996)

    Article  ADS  Google Scholar 

  • Pruvost, L., Serre, I., Duong, H., Jortner, J.: Expansion and cooling of a bright rubidium three-dimensional optical molasses. Phys. Rev. A 61, 053408 (2000)

    Article  ADS  Google Scholar 

  • Raab, E.L., Prentiss, M., Cable, A., Chu, S., Pritchard, D.E.: Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631–2634 (1987)

    Article  ADS  Google Scholar 

  • Robinson, M.P., Tolra, B.L., Noel, M.W., Gallagher, T.F., Pillet, P.: Spontaneous evolution of Rydberg atoms into an ultracold plasma. Phys. Rev. Lett. 85, 4466–4469 (2000)

    Article  ADS  Google Scholar 

  • Saffman, M., Walker, T.G., Mølmer, K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    Article  ADS  Google Scholar 

  • Sesko, D.W., Walker, T.G., Wieman, C.E.: Behavior of neutral atoms in a spontaneous force trap. J. Opt. Soc. Am. B 8, 946–958 (1991)

    Article  ADS  Google Scholar 

  • Stamper-Kurn, D.M., Andrews, M.R., Chikkatur, A.P., Inouye, S., Miesner, H.-J., Stenger, J., Ketterle, W.: Optical confinement of a Bose–Einstein condensate. Phys. Rev. Lett. 80, 2027–2030 (1998)

    Article  ADS  Google Scholar 

  • Terças, H., Mendonça, J., Guerra, V.: Classical rotons in cold atomic traps. Phys. Rev. A 86, 053630 (2012)

    Article  ADS  Google Scholar 

  • Terças, H., Mendonça, J.: Polytropic equilibrium and normal modes in cold atomic traps. Phys. Rev. A 88, 023412 (2013)

    Article  ADS  Google Scholar 

  • Townsend, C.G., Edwards, N.H., Cooper, C.J., Zetie, K.P., Foot, C.J., Steane, A.M., Szriftgiser, P., Perrin, H., Dalibard, J.: Phase-space density in the magneto-optical trap. Phys. Rev. A 52, 1423–1440 (1995)

    Article  ADS  Google Scholar 

  • Walker, T., Sesko, D., Wieman, C.: Collective behavior of optically trapped neutral atoms. Phys. Rev. Lett. 64, 408–411 (1990)

    Article  ADS  Google Scholar 

  • Wilkowski, D., Ringot, J., Hennequin, D., Garreau, J.C.: Instabilities in a magneto-optical trap: noise-induced dynamics in an atomic system. Phys. Rev. Lett. 85, 1839–1842 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Rodrigues.

Additional information

This article is part of the Topical Collection on Laser technologies and laser applications.

Guest Edited by José Figueiredo, José Rodrigues, Nikolai A. Sobolev, Paulo André and Rui Guerra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, J.D., Rodrigues, J.A., Ferreira, A.V. et al. Collective processes in a large atomic laser cooling experiment. Opt Quant Electron 48, 169 (2016). https://doi.org/10.1007/s11082-016-0442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0442-0

Keywords

Navigation