Skip to main content
Log in

Polar, semi- and non-polar nitride-based quantum dots: influence of substrate orientation and material parameter sets on electronic and optical properties

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work we present a detailed analysis of electrostatic built-in fields, electronic and optical properties of InGaN-based quantum dots grown on different crystallographic planes. The calculations are performed by means of a symmetry adapted \(\mathbf {k}\cdot \mathbf {p}\) model. Special attention is paid to the influence of different effective mass and deformation potential parameter sets on the results. Our analysis reveals that the built-in potential profile is strongly dependent on the growth plane. These changes in the built-in potential affect the electronic structure and therefore the optical properties of semi-polar InGaN quantum dots significantly. For instance, while we observe a clear spatial separation of electron and hole ground state wave functions for quantum dots grown on the \((10\bar{1}3)\)-plane, for the \((20\bar{2}1)\)-plane our results indicate a strong spatial overlap. Furthermore, we show that the calculation of the degree of optical linear polarization in the considered semipolar InGaN quantum dot systems significantly depends on the chosen material parameter set for substrate incline angles of \(0^\circ <\theta <58^\circ\). For instance, for growth on the \((10\bar{1}3)~(\theta =32^\circ)\)-plane, the degree of optical linear polarization changes from 90 to 10 % when changing the input material parameter set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Boeck, S., et al.: The object-oriented DFT program library S/PHI/nX. Comput. Phys. Commun. 182, 543–554 (2011)

    Article  ADS  Google Scholar 

  • Brault, J., et al.: Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters. Semicond. Sci. Technol. 29, 084001 (2014)

    Article  ADS  Google Scholar 

  • Caro, M.A., et al.: Built-in field control in alloyed c-plane III-N quantum dots and wells. J. Appl. Phys. 109, 084110 (2011)

    Article  ADS  Google Scholar 

  • Christmas, U.M.E., Andreev, A.D., Faux, D.A.: Calculation of electric field and optical transitions in InGaN/GaN quantum wells. J. Appl. Phys. 98, 073522 (2005)

    Article  ADS  Google Scholar 

  • Chuang, S.L., et al.: k.p method for strained wurtzite semiconductors. Phys. Rev. B 54, 2491–2504 (1996)

    Article  ADS  Google Scholar 

  • Coughlan, C., et al.: Band gap bowing and optical polarization switching in Al1–xGaxN alloys. Phys. Stat. Sol. B 252, 879–884 (2015)

    Article  ADS  Google Scholar 

  • Das, A., et al.: Improved luminescence and thermal stability of semipolar (11–22) InGaN quantum dots. Appl. Phys. Lett. 98, 201911 (2011)

    Article  ADS  Google Scholar 

  • Feezell, D., et al.: Semipolar 20-2-1 InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting. J. Disp. Technol. 9(4), 190–198 (2013)

    Article  ADS  Google Scholar 

  • Feng, S.-W., et al.: Anisotropic strain relaxation and the resulting degree of polarization by one- and two-step growth in nonpolar a-plane GaN grown on r-sapphire substrate. J. Appl. Phys. 114, 233103 (2013)

    Article  ADS  Google Scholar 

  • Funato, M., Kawakami, Y.: Excitonic properties of polar, semipolar, and nonpolar InGaN/GaN strained quantum wells with potential fluctuations. J. Appl. Phys. 103, 093501 (2008)

    Article  ADS  Google Scholar 

  • Gühne, T., et al.: Cathodoluminescence spectroscopy of epitaxial-lateral-overgrown nonpolar (11–20) and semipolar (11–22) GaN in relation to microstructural characterization. J. Appl. Phys. 101, 113101 (2007)

    Article  ADS  Google Scholar 

  • Hong, K.B., Kuo, M.K.: Effect of piezoelectric constants in electronic structures of InGaN quantum dots. Semicond. Sci. Technol. 28, 105006 (2013)

    Article  ADS  Google Scholar 

  • Huang, H.-H., Wu, Y.-R.: Study of polarization properties of light emitted from a-plane InGaN/GaN quantum well-based light emitting diodes. J. Appl. Phys. 106, 023106 (2009)

    Article  ADS  Google Scholar 

  • Huang, H.-H., Wu, Y.-R.: Light emission polarization properties of semipolar InGaN/GaN quantum well. J. Appl. Phys. 107, 053112 (2010)

    Article  ADS  Google Scholar 

  • Kojima, K., et al.: Theoretical investigations on anisotropic optical properties in semipolar and nonpolar InGaN quantum wells. Phys. Stat. Sol. C 5, 3038–3041 (2008)

    Article  Google Scholar 

  • Kozlowski, G., Corbett, B., Schulz, S.: Color stability, wave function overlap and leakage currents in InGaN-based LED structures: the role of the substrate orientation. Semicond. Sci. Technol. 30, 055014 (2015)

    Article  ADS  Google Scholar 

  • Kundys, D., et al.: Polarized photoluminescence excitation spectroscopy of a-plane InGaN/GaN multiple quantum wells grown on r-plane sapphire. J. Appl. Phys. 115, 113106 (2014)

    Article  ADS  Google Scholar 

  • Marquardt, O., et al.: Plane-wave implementation of the real-space \(\mathbf{k}\cdot \mathbf{p}\) formalism and continuum elasticity theory. Comput. Phys. Commun. 181, 765–771 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Masui, H., et al.: Recent progress in nonpolar LEDs as polarized light emitters. Phys. Stat. Sol. (a) 206, 203–205 (2009)

    Article  ADS  Google Scholar 

  • Matioli, E., et al.: High-brightness polarized light-emitting diodes. Light Sci. Appl. 1, e22 (2012)

    Article  Google Scholar 

  • Orihara, M., et al.: RF-MBE growth of semipolar InN (10–13) and InGaN (10–13) on GaAs(110). Phys. Stat. Sol. C 9, 658–661 (2012)

    Article  Google Scholar 

  • Ploch, S., et al.: Orientation control of GaN (11–22) and (10-1-3) grown on (10–10) sapphire by metal-organic vapor phase epitaxy. J. Cryst. Growth 312(15), 2171–2174 (2010)

    Article  ADS  Google Scholar 

  • Rinke, P., et al.: Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN. Phys. Rev. B 77, 075202 (2008)

    Article  ADS  Google Scholar 

  • Romanov, A.E., et al.: Strain-induced polarization in wurtzite III-nitride semipolar layers. J. Appl. Phys. 100, 023522 (2006)

    Article  ADS  Google Scholar 

  • Sakai, S., et al.: Theoretical analysis of optical polarization properties in semipolar and nonpolar InGaN quantum wells for precise determination of valence-band parameters in InGaN alloy material. Phys. Stat. Sol. B 252, 885–889 (2015)

    Article  ADS  Google Scholar 

  • Schade, L., et al.: Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells. Phys. Stat. Sol. B 248, 638–646 (2011)

    Article  ADS  Google Scholar 

  • Scholz, F.: Semipolar GaN grown on foreign substrates: a review. Semicond. Sci. Technol. 27, 024002 (2012)

    Article  ADS  Google Scholar 

  • Schulz, S., Berube, A., O’Reilly, E.P.: Polarization fields in nitride-based quantum dots grown on nonpolar substrates. Phys. Rev. B 79, 081401 (2009)

    Article  ADS  Google Scholar 

  • Schulz, S., et al.: Theory of reduced built-in polarization field in nitride-based quantum dots. Phys. Rev. B 82, 033411 (2010)

    Article  ADS  Google Scholar 

  • Schulz, S., Marquardt, O.: Electronic structure of polar and semipolar (\(11\bar{2}2\))-oriented nitride dot-in-a-well systems. Phys. Rev. Appl. 3, 064020 (2015)

    Article  ADS  Google Scholar 

  • Schwarz, U.T., Kneissl, M.: Nitride emitters go nonpolar. Phys. Stat. Sol. (RRL) 1, A44–A46 (2007)

    Article  Google Scholar 

  • Sutherland, D., et al.: An investigation into defect reduction techniques for growth of non-polar GaN on sapphire. Phys. Stat. Sol. (C) 11, 541–544 (2014)

    Article  Google Scholar 

  • Vurgaftman, I., Meyer, J.R.: Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94(3675), 5815–5875 (2003)

    Google Scholar 

  • Waltereit, P., et al.: Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865–868 (2000)

    Article  ADS  Google Scholar 

  • Yan, Q., et al.: Band parameters and strain effects in ZnO and group-III nitrides. Semicond. Sci. Technol. 26, 014037 (2011)

    Article  ADS  Google Scholar 

  • Zhao, Y., et al.: Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices. Jpn. J. Appl. Phys. 53, 100206 (2014)

    Article  ADS  Google Scholar 

  • Zhu, T., et al.: Non-polar (11–20) InGaN quantum dots with short exciton lifetimes grown by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 102, 251905, (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Science Foundation Ireland (project number 13/SIRG/2210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kanta Patra.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 15.

Guest edited by Julien Javaloyes, Weida Hu, Slawek Sujecki and Yuh-Renn Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, S.K., Marquardt, O. & Schulz, S. Polar, semi- and non-polar nitride-based quantum dots: influence of substrate orientation and material parameter sets on electronic and optical properties. Opt Quant Electron 48, 151 (2016). https://doi.org/10.1007/s11082-016-0426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0426-0

Keywords

Navigation