Skip to main content

Advertisement

Log in

Optoelectronic properties of morning glory as dye on TiO2 thin film

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This study takes advantage of the natural plant dwarf morning glory. It may be able to use in solar photovoltaic technology. The experimental results indicated that the dwarf morning glory flower dye has an absorption peak of 657 nm. The manufactured dye-battery has be obvious, a maximum current of 4.7 × 10−3 (A/cm2) and a maximum voltage of 0.27 V and a conversion efficiency of 1.27 %. The yield of hydrogen generation can reach to 3.14 × 10−05 (l/s m2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  ADS  Google Scholar 

  • Grätzel, M.: Applied physics: solar cells to dye for. Nature 421, 586–587 (2003)

    Article  ADS  Google Scholar 

  • Hanley, N., Shogren, J.F., White, B.: Environmental Economics in Theory and Practice. Macmillan, Basingstoke (1997)

    Book  Google Scholar 

  • Kay, A., Grätzel, M.: Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97, 6272–6277 (1993)

    Article  Google Scholar 

  • Mantell, C., Rodriguez, M., de la Ossa, E.M.: Measurement of the diffusion coefficient of a model food dye (malvidin 3,5-diglucoside) in a high pressure CO2+ methanol system by the chromatographic peak-broadening technique. J. Supercrit. Fluids 25, 57–68 (2003)

    Article  Google Scholar 

  • O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(24), 737–740 (1991)

    Article  Google Scholar 

  • Pichot, F., Gregg, B.A.: The photovoltage-determining mechanism in dye-sensitized solar cells. J. Phys. Chem. B. 104, 6–10 (2000)

    Article  Google Scholar 

  • Saito, N., Toki, K., Morita, Y., Hoshino, A., Iida, S., Shigihara, A., Honda, T.: Acylated peonidin glycosides from duskish mutant flowers of Ipomoea nil. Phytochemistry 66, 1852–1860 (2005)

    Article  Google Scholar 

  • Serpone, N., Pelizzetti, E.: Photocatalysis: Fundamental and Applications. Wiley, New York (1983)

    Google Scholar 

  • So, P.T.C., Dong, C.Y., Masters, B.R., Berland, K.M.: Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2, 399–429 (2000)

    Article  Google Scholar 

  • Su, Y.H., Lai, W.H., Teoh, L.G., Hon, M.H., Huang, J.L.: Layer-by-layer Au nanoparticles as a Schottky barrier in water-based dye-sensitized solar cell. Appl. Phys. A 88, 173–178 (2007)

    Article  ADS  Google Scholar 

  • Su, Y.H., Huang, S.H., Kung, P.Y., Shen, T.W., Wang, W.L.: Hydrogen generation of Cu2O nanoparticles/MnO–MnO2 nanorods heterojunction supported on sonochemical-assisted synthesized few-layer graphene in water-splitting photocathode. ACS Sustain. Chem. Eng. 3, 1965–1973 (2015)

    Article  Google Scholar 

  • Tennakone, K., Bandaranayake, P.K.M., Jayaweera, P.V.V., Konno, A., Kumara, G.R.R.A.: Dye-sensitized composite semiconductor nanostructures. Phys. E 14, 190–196 (2002)

    Article  Google Scholar 

  • Wang, P., Klein, C., Humphry-Baker, R., Zakeeruddin, S.M., Gratzel, M.: A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. J. Am. Chem. Soc. 127, 808–809 (2005)

    Article  Google Scholar 

  • Wang, P., Zadeeruddin, S.M., Comte, P., Charvet, R., Humphry-Baker, R., Gratzel, M.: Enhance the performance of dye-sensitized solar cells by Co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. J. Phys. Chem. B 107, 14336–14341 (2003)

    Article  Google Scholar 

  • Whitesides, G.M., Grzyboski, B.: Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. 99, 4769–4774 (2002)

    Article  ADS  Google Scholar 

  • Wongcharee, K., Meeyoo, V., Chavadej, S.: Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol. Energy Mater. Sol. Cells 91, 566–571 (2007)

    Article  Google Scholar 

  • You, Y., Zhang, S., Wan, L., Xu, D.: Preparation of continuous TiO2 fibers by sol–gel method and its photocatalytic degradation on formaldehyde. Appl. Surf. Sci. 258, 3469–3474 (2012)

    Article  ADS  Google Scholar 

  • Zhou, H., Wu, L., Gao, Y., Ma, T.: Dye-sensitized solar cells using 20 natural dyes as sensitizers. J. Photochem. Photobiol. A 219, 188–194 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided to this study by the National Science Council (NSC) of Taiwan under contract no. NSC 101-2221-E-151-015 and No. 102-2221-E-006-293-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao-Hsing Chen.

Additional information

This article is part of the Topical Collection on Micro/Nano Photonics for the International Year of Light 2015.

Guest Edited by Yen-Hsun Su, Lei Liu, Xinlong Xu and Zhenhua Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, SL., Chen, TH., Su, YH. et al. Optoelectronic properties of morning glory as dye on TiO2 thin film. Opt Quant Electron 48, 92 (2016). https://doi.org/10.1007/s11082-016-0391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0391-7

Keywords

Navigation