Skip to main content
Log in

Performance evaluation of photonic crystal ring resonators based optical channel add-drop filters with the aid of whispering gallery modes and their Q-factor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

As a basic type of linear defects, the PhC ring resonators are considered the most fascinating elements to be used in photonics integrated circuits for applications such as dense wavelength division multiplexing and Optical filtering that are among the most important components of the telecommunication systems. This article proposes two different optical channel add-drop filters (CDFs) based on rod-type two-dimensional square-lattice all-circular photonic crystal ring resonator. In the studied ring-type PhC cavity, there are some modes that are analogous to whispering gallery (WG) modes. For the proposed all-circular PhC ring resonator, the WG-like mode with the azimuthal mode number \(m=10\), couples out from cavity to the drop waveguide. Although because of the absence of perfectly circular symmetry, these WG-like modes are not exactly degenerate but they form a close doublet. The normalized frequencies (\(a/\lambda \)) of the doublets of \(m=10\) are \(a/\lambda =0.3684\), and 0.3645 and their \(Q\)-factors are 1050, 866 respectively. By selecting appropriate coupling distance between the PhC ring resonator and side-coupled \(W_{1}\) waveguide, the CDFs are formed. For a TM polarized Gaussian source, the drop efficiency of both filters is more than 99.8 % in the 1.535–1.625 \(\upmu \hbox {m}\) wavelength interval. The photonic bandgap and the WG-like modes of the PhC ring resonator are calculated using the PWE method, and the \(Q\)-factor of modes and the transmission spectra of CDFs are calculated using 2D-FDTD method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Boriskin, A.V., Boriskina, S.V., Rolland, A., Sauleau, R., Nosich, A.I.: Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder. JOSA A 25(5), 1169–1173 (2008)

    Article  ADS  MATH  Google Scholar 

  • Bush, K., Lolkes, S., Wehrspohn, R., Foll, H.: Photonic Crystals. Wiley, Weinheim (2004)

    Book  Google Scholar 

  • Chu, T., Yamada, H., Gomyo, A., Ushida, J., Ishida, S., Arakawa, Y.: Tunable optical notch filter realized by shifting the photonic bandgap in a silicon photonic crystal line-defect waveguide. IEEE Photonics Technol. Lett. 18(24), 2614–2616 (2006)

    Article  ADS  Google Scholar 

  • Chung, K., Yoon, J.: Properties of a \(1\times 4\) optical power splitter made of photonic crystal waveguides. Opt. Quantum Electron. 35(10), 959–966 (2003). doi: 10.1023/A:1025173916864

    Article  Google Scholar 

  • Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Optik—Int. J. Light Electron. Opt. 123(2), 167–170 (2012)

    Article  Google Scholar 

  • Espinola, R., Ahmad, R., Pizzuto, F., Steel, M., Osgood, R.: A study of high-index-contrast 90 degree waveguide bend structures. Opt. Express 8(9), 517–528 (2001)

    Article  ADS  Google Scholar 

  • Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, A.: Channel drop filters in photonic crystals. Opt. Express 3, 4–11 (1998)

    Article  ADS  Google Scholar 

  • Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45(10), 1027–1036 (2013)

    Article  Google Scholar 

  • Ghaffari, A., Monifi, F., Djavid, M., Abrishamian, M.: Photonic crystal bends and power splitters based on ring resonators. Opt. Commun. 281(23), 5929–5934 (2008a)

  • Ghaffari, A., Monifi, F., Djavid, M., Abrishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008b)

    Article  ADS  Google Scholar 

  • Ghasemi, V.K.H.: Design tunable optical thin film fabry-perot filter in dense wavelength division multiplexer. Majlesi J. Telecommun. Dev. 2(1), 167–171 (2013)

  • Gibbs, H.: Optical Bistability: Controlling Light with Light. Elsevier, Amsterdam (1985)

    Google Scholar 

  • Guo, S., Albin, S.: Numerical techniques for excitation and analysis of defect modes in photonic crystals. Opt. Express 11(9), 1080–1089 (2003)

    Article  ADS  MATH  Google Scholar 

  • Inoue, K., Ohtaka, K.: Photonic Crystals: Physics, Fabrication and Applications. Springer, Berlin (2004)

    Book  Google Scholar 

  • Janfaza, M., Mansouri-Birjandi, M.A.: Wideband slow light in photonic crystal slab waveguide based on geometry adjustment and optofluidic infiltration. Appl. Opt. 52(34), 8184–8189 (2013)

    Article  ADS  Google Scholar 

  • Joannopoulos, J., Johnson, S.G., Winn, N., Meade, R.D.: Photonic Crystal: Molding the flow of light, 2nd ed. Princeton University Press, Princeton (2008)

  • Johnson, S., Joannopoulos, J.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8(3), 173–190 (2001)

    Article  ADS  Google Scholar 

  • Lalanne, P., Mias, S., Hugonin, J.: Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities. Opt. Express 12(3), 458–467 (2004)

    Article  ADS  Google Scholar 

  • Li, J.: Terahertz wave narrow bandpass filter based on photonic crystal. Opt. Commun. 283(13), 2647–2650 (2010)

    Article  ADS  Google Scholar 

  • Liu, Y., Sarris, C.D.: Fast time-domain simulation of optical waveguide structures with a multilevel dynamically adaptive mesh refinement FDTD approach. J. Lightwave Technol. 24(8), 3235–3247 (2006)

  • Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic crystal cavity-based WDM multiplexer. Photon. Nanostruct. Fundam. Appl. 5, 164–170 (2007)

    Article  ADS  Google Scholar 

  • Meade, R., Rappe, A., Brommer, K., Joannopoulos, J., Alherhand, O.: Erratum: Accurate theoretical analysis of photonic band-gap materials (Phys. Rev. B 48, 8434 (1993)). Phys. Rev.-Sect. B-Condensed Matter 55(23), 15942–15943 (1997)

  • Monifi, F., Djavid, M., Ghaffari, A., Abrishamian, M.: A new bandstop filter based on photonic crystals. In: Proceedings of the PIER, Cambridge, USA (2008)

  • Olivier, S., Benisty, H., Smith, C., Rattier, M., Weisbuch, C., Krauss, T.: Transmission properties of two-dimensional photonic crystal channel waveguides. Opt. Quantum Electron. 34(1–3), 171–181 (2002)

    Article  Google Scholar 

  • Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)

    Article  ADS  Google Scholar 

  • Rafizadeh, D., Zhang, J., Hagness, S., Taflove, A., Stair, K., Ho, S., Tiberio, R.: Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range. Opt. Lett. 22(16), 1244–1246 (1997)

    Article  ADS  Google Scholar 

  • Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator based add-drop filter using hexagonal rods for CWDM systems. Optoelectron. Lett. 7(3), 164–166 (2011)

    Article  ADS  Google Scholar 

  • Robinson, S., Nakkeeran, R.: PCRR based add drop filter for ITU-T G. 694.2 CWDM systems. Optik-Int. J. Light Electron Opt. 124(5), 393–398 (2013)

  • Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator-based add drop filters: a review. Opt. Eng. 52(6), 060901–060901 (2013)

    Article  ADS  Google Scholar 

  • Saghirzadeh Darki, B., Granpayeh, N.: Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method. Opt. Commun. 283(20), 4099–4103 (2010)

    Article  ADS  Google Scholar 

  • Sakai, A., Baba, T.: FDTD simulation of photonic devices and circuits based on circular and fan-shaped microdisks. J. Lightwave Technol. 17(8), 1493–1499 (1999)

  • Sakoda, K.: Optical Properties of Photonic Crystals. Springer, Berlin (2005)

    Google Scholar 

  • Shlager, K.L., Schneider, J.B.: A selective survey of the finite-difference time-domain literature. IEEE Antennas Propag. Mag. 37(4), 39–57 (1995)

    Article  ADS  Google Scholar 

  • Stieler, D.P.: Characterization of Defect Cavities and Channel-Drop Filters in the Three Dimensional Woodpile Photonic Crystal. Graduate Theses and Dissertations, Iowa State University (2008)

  • Stoffer, R., Hoekstra, H., De Ridder, R., Van Groesen, E., Van Beckum, F.: Numerical studies of 2D photonic crystals: waveguides, coupling between waveguides and filters. Opt. Quantum Electron. 32(6–8), 947–961 (2000)

    Article  Google Scholar 

  • Suh, W., Fan, S.: All-pass transmission or flattop reflection filters using a single photonic crystal slab. Appl. Phys. Lett. 84(24), 4905–4907 (2004)

    Article  ADS  Google Scholar 

  • Tavousi, A., Mansouri-birjandi, M.A., saffari, M.: Add-drop and channel-drop optical filters based on photonic crystal ring resonators. Int. J. Commun. Inf. Technol. 2(1), 19–24 (2012)

  • Villeneuve, P.R., Fan, S., Joannopoulos, J.: Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency. Phys. Rev. B 54(11), 7837–7842 (1996)

  • Vlasov, Y.A., O’Boyle, M., Hamann, H.F., McNab, S.J.: Active control of slow light on a chip with photonic crystal waveguides. Nature 438(7064), 65–69 (2005)

    Article  ADS  Google Scholar 

  • Xiao, Y.-F., Min, B., Jiang, X., Dong, C.-H., Yang, L.: Coupling whispering-gallery-mode microcavities with modal coupling mechanism. IEEE J. Quantum Electron. 44(11), 1065–1070 (2008)

    Article  Google Scholar 

  • Xu, X., Qiang, Z., Jiang, J., Chen, X., Li, H., Qiu, Y.: Modal analysis of ultra-compact channel filters based on race-track photonic crystal ring resonators. J. Modern Opt. 58(11), 932–938 (2011)

    Article  ADS  Google Scholar 

  • Yariv, A., Yeh, P.: Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering). Oxford University Press Inc., Oxford (2006)

  • Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  ADS  MATH  Google Scholar 

  • Yu, T., He, L., Deng, X., Fang, L., Liu, N.: Power splitter based on photonic crystal waveguides with an air holes array. Opt. Eng. 50(11), 114601 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Mansouri-Birjandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavousi, A., Mansouri-Birjandi, M.A. Performance evaluation of photonic crystal ring resonators based optical channel add-drop filters with the aid of whispering gallery modes and their Q-factor. Opt Quant Electron 47, 1613–1625 (2015). https://doi.org/10.1007/s11082-014-0018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0018-9

Keywords

Navigation