Skip to main content
Log in

Carrier kinetics and population inversion in Landau level system in cascade GaAs/AlGaAs quantum well structures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The carrier distribution over Landau levels was studied in resonant tunneling GaAs/AlGaAs quantum well structures under tunneling pumping of the upper subband. The numerical calculations of the Landau levels population for various values of pumping intensity (tunneling time), magnetic field and the structure doping were carried out. The effect of various scattering mechanisms, as two-electron (electron–electron scattering) as single-electron (acoustic phonon and interface roughness scattering) ones on level population was studied. The population inversion between the zeroth Landau level of the upper subband and the first Landau level of the lowest subband was shown to exist in wide range of the magnetic field strength thus providing the possibility of wide range tunable stimulated terahertz emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Chakraborty, T., Apalkov, V.M.: Quantum cascade transitions in nanostructures. Adv. Phys. 52(5), 455–521 (2003)

    Google Scholar 

  • Ekenberg, U.: Nonparabolicity effects in a quantum well: sublevel shift, parallel mass, and Landau levels. Phys. Rev. B. 40, 7714–7726 (1989)

    Google Scholar 

  • Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264, 553–556 (1994)

    Google Scholar 

  • Ferreira, R., Bastard, G.: Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures. Phys. Rev. B. 40, 1074–1086 (1989)

    Google Scholar 

  • Golovach, V.N., Portnoi, M.E.: Electron-phonon scattering at the intersection of two Landau levels. Phys. Rev. B. 74, 085321–085331 (2006)

    Google Scholar 

  • Gornik, E.: Landau emission in semiconductors. In: Lecture Notes in Physics. vol. 133, p. 160. Springer, Berlin (1980)

  • Gornik, E.: Magnetically tunable far infrared emitters and detectors. In: Lecture Notes in Physics, vol. 177, pp. 248–258. Springer, Berlin (1983)

  • Ivanov, Y.L., Vasil’ev, Y.B.: Submillimeter emission of hot holes in transverse magnetic field. Technol. Phys. Lett. 9, 613–616 (1983)

    Google Scholar 

  • Kazarinov, R.F., Suris, R.A.: Possibility of the amplification of the electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semicond. 5, 707–709 (1971)

    Google Scholar 

  • Kempa, K., Zhou, Y., Engelbrecht, J.R., Bakshi, P.: Electron–electron scattering in strong magnetic fields in quantum well systems. Phys. Rev. B. 68, 085302–085306 (2003)

    Google Scholar 

  • Köhler, R., Iotti, R.C., Tredicucci, A., Rossi, F.: Design and simulation of terahertz quantum cascade lasers. Appl. Phys. Lett. 79, 3920–3922 (2001)

    Article  ADS  Google Scholar 

  • Lax, B.: Cyclotron resonance and impurity levels in semiconductors. In: Townes C.H. (ed.) Quantum Electronics, pp. 428–444. Columbia University Press, NY (1960)

  • Leuliet, A., Vasanelli, A., Wade, A., Fedorov, G., Smirnov, D., Bastard, G., Sirtori, C.: Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers. Phys. Rev. B. 73, 085311–085319 (2006)

    Google Scholar 

  • Mityagin, Y.A., Murzin, V.N., Stoklitsky, S.A., Chebotarev, A.P., Melnichuk, I.M.: Wide range tunable submillimeter cyclotron resonanse laser. Opt. Quantum Electron. 23, S307–S311 (1991)

    Article  Google Scholar 

  • Novaković, B., Radovanović, J., Mirčetić, A., Milanović, V., Ikonić, Z., Indjin, D.: Influence of electron–electron scattering on electron relaxation rates in three and four-level quantum cascade lasers in magnetic fields. Opt. Commun. 279, 330–335 (2007)

    Article  ADS  Google Scholar 

  • Péré-Laperne, N., de Vaulchier, L.A., Guldner, Y., Bastard, G., Scalari, G., Giovannini, M., Faist, J., Vasanelli, A., Dhillon, S., Sirtori, C.: Inter-Landau level scattering and LO-phonon emission in terahertz quantum cascade laser. Appl. Phys. Lett. 91, 062102–062104 (2007)

    Google Scholar 

  • Radovanović, J., Milanović, V., Ikonić, Z., Indjin, D., Harrison, P.: Electron-phonon relaxation rates and optical gain in a quantum cascade laser in a magnetic field. J. Appl. Phys. 97, 103109–103113 (2005)

    Google Scholar 

  • Radovanović, J., Mirčetić, A., Milanović, V., Ikonić, Z., Indjin, D., Harrison, P., Kelsall, R.W.: Influence of the active region design on output characteristics of GaAs/AlGaAs quantum cascade lasers in a strong magnetic field. Semicond. Sci. Technol. 21, 215–220 (2006)

    Google Scholar 

  • Savić, I., Ikonić, Z., Milanović, V., Vukmirović, N., Jovanović, V.D., Indjin, D., Harrison, P.: Electron transport in quantum cascade lasers in a magnetic field. Phys. Rev. B. 73, 075321–075328 (2006)

    Google Scholar 

  • Scalari, G., Walther, C., Sirigu, L., Sadowski, M.L., Beere, H., Ritchie, D., Hoyler, N., Giovannini, M., Faist, J.: Strong confinement in terahertz intersubband lasers by intense magnetic fields. Phys. Rev. B. 76, 115305–115311 (2007)

    Google Scholar 

  • Telenkov, M.P., Mityagin, Y.A., Kartsev, P.F.: Intersubband population inversion and stimulated transitions between the Landau levels in resonant tunneling quantum-well structures. JETP Lett. 92(6), 401–404 (2010)

    Google Scholar 

  • Telenkov, M.P., Mityagin, Y.A., Kartsev, P.F.: Intersubband terahertz transitions in Landau level system of cascade GaAs/AlGaAs quantum well structures in strong tilted magnetic field. Nanoscale Res. Lett. 7, 491–495 (2012)

    Google Scholar 

  • Timotijević, D., Radovanović, J., Milanović, V.: The role of electron-electron scattering in gain modulation of a mid-infrared quantum cascade laser in strong magnetic field. Semicond. Sci. Technol. 27, 045006–045010 (2012)

    Google Scholar 

  • Tredicucci, A., Köhler, R., Mahler, L., Beere, H.E., Linfield, E.H., Ritchie, D.A.: Terahertz quantum cascade lasers—first demonstration and novel concepts. Semicond. Sci. Technol. 20, S222–S227 (2005)

    Google Scholar 

  • Wacker, A.: Vertical transport and domain formation in multiple quantum wells. In: Schöll E. (ed.) Theory of Transport Properties of Semiconductor Nanostructures, chap. 10. Champman and Hall, London (1998)

  • Wade, A., Fedorov, G., Smirnov, D., Kumar, S., Williams, B.S., Hu, Q., Reno, J.L.: Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K. Nat. Photon. 3, 41–45 (2009)

    Article  ADS  Google Scholar 

  • Živanović, S., Milanović, V., Ikonić, Z.: Intrasubband absorption in semiconductor quantum wells in the presence of perpendicular magnetic field. Phys. Rev. B 52, 8305–8311 (1995)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Foundation for Basic Research (Project No. \(12\_02\_00564\)), the Council on Grants from the President of the Russian Federation for Young Ph.D. Scientists (Grant No. MK-916.2009.2), National University of Science and Technology “MISiS” (Grant No. 3400022), and the Ministry of Education and Science of the Russian Federation within the framework of the Russian Federal Target Program “Scientific and Scientific–Pedagogical Human Resources for the Innovative Russia in 2009–2013.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Mityagin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telenkov, M.P., Mityagin, Y.A. & Kartsev, P.F. Carrier kinetics and population inversion in Landau level system in cascade GaAs/AlGaAs quantum well structures. Opt Quant Electron 46, 759–767 (2014). https://doi.org/10.1007/s11082-013-9784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-013-9784-z

Keywords

Navigation