Skip to main content
Log in

Laser short-pulse heating of silicon-aluminum thin films

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Energy transport in silicon-aluminum thin films is examined during the laser short-pulse irradiation subjected to the silicon film. The silicon film is considered to be at the top of the aluminum film. Thermal boundary resistance at the interface of the films is incorporated in the analysis. The absorption of laser radiation in the silicon and aluminum films is modeled using the transfer matrix method. Since the silicon film is dielectric, the phonon radiative transport basing the Boltzmann transport equation is incorporated to determine equivalent equilibrium temperature in the film while modified two-equation model is used to account for the non-equilibrium energy transport due to thermal separation of electron and phonon sub-systems in the aluminum film during the laser short-pulse heating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bejan A.: Advanced engineering thermodynamics. Wiley, New York (2006)

    Google Scholar 

  • Chen G.: Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57(23), 14958–14973 (1998)

    Article  ADS  Google Scholar 

  • Hyldgaard P., Mahan G.D.: Phonon superlattice transport. Phys. Rev. B 56(17), 10745–10756 (1997)

    Article  Google Scholar 

  • Jiang L., Tsai H.: Energy transport and nanostructuring of dielectrics by femtosecond laser pulse trains. J. Heat Transfer 128, 926–933 (2006)

    Article  Google Scholar 

  • Joshi A.A., Majumdar A.: Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys 74(1), 31–39 (1993)

    Article  ADS  Google Scholar 

  • Ju Y.S.: Impact of nonequilibrium between electrons and phonons on heat transfer in metallic nanoparticles suspended in dielectric media. J. Heat Transfer 127, 1400–1402 (2005)

    Article  Google Scholar 

  • Ju Y.S., Hung M., Usui T.: Nanoscale heat conduction across metal-dielectric interfaces. J. Heat Transfer 128, 919–925 (2006)

    Article  Google Scholar 

  • Kuhn T., Maasilta I.J.: Ballistic phonon transport in dielectric membranes. Nuclear Instrum. Methods Phys. Res. A 559, 724–726 (2006)

    Article  ADS  Google Scholar 

  • Liu L., Huang M., Yang R., Jeng M., Yang C.: Curvature effect on the phonon thermal conductivity of dielectric nanowires. J. Appl. Phys. 105, 104313–104316 (2009)

    Article  ADS  Google Scholar 

  • Majumdar A.: Microscale heat conduction in dielectric thin films. J. Heat Transfer 115, 7–16 (1993)

    Article  Google Scholar 

  • Majumdar A., Reddy P.: Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces. Appl. Phys. Lett. 84(23), 4768–4770 (2004)

    Article  ADS  Google Scholar 

  • Miyazaki K., Arashi T., Makino D., Tsukamoto H.: Heat conduction in microstructured materials. IEEE Trans. Components Packaging Technol. 29(2), 247–253 (2006)

    Article  Google Scholar 

  • Pilon L., Katika K.M.: Modified method of characteristics for simulating microscale energy transport. J. Heat Transfer 126, 735–743 (2004)

    Article  Google Scholar 

  • Prasher R.S., Phelan P.E.: A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance. J. Heat Transfer 123, 105–112 (2001)

    Article  Google Scholar 

  • Rowlette J.A., Goodson K.E.: Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron Devices 55(1), 220–232 (2008)

    Article  ADS  Google Scholar 

  • Stevens, R.J., Norris, P.M., Zhigilei, L.V.: Molecular-dynamics study of thermal boundary resistance: evidence of strong ineleastic scattering transport channels. In: 2004 ASME International Mechanical Engineering Congress and Exposition, Proceedings of IMECE04, California, USA, November 13–20, pp. 1–9 (2004)

  • Tamura S., Hurley D.C., Wolfe J.P.: Acoustic-phonon propogation in superlattices. Phys. Rev. B 38(2), 1427–1449 (1988)

    Article  ADS  Google Scholar 

  • Wong B.T., Menguc M.P., Vallance R.R.: Nano-scale machining via electron beam and laser processing. J. Heat Transfer 126, 566–576 (2004)

    Article  Google Scholar 

  • Yeh P.: Optical waves in layered media. Wiley, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Yilbas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansoor, S.B., Yilbas, B.S. Laser short-pulse heating of silicon-aluminum thin films. Opt Quant Electron 42, 601–618 (2011). https://doi.org/10.1007/s11082-011-9482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-011-9482-7

Keywords

Navigation