Skip to main content
Log in

Gain-bandwidth trade-off in a transistor laser: quantum well dislocation effect

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The Authors report an analytical model to investigate optoelectronic characteristics reliance of a Transistor Laser on Quantum Well Location. Using simulated base recombination lifetime, optical frequency response for different quantum-well locations extracted. Slipping the well towards the collector, improves the optical bandwidth where a maximum of ≈54 GHz is observed. No resonance peak, limiting factor in diode lasers, is occurred in this enhancement method. Analyzing current gain (β) as a function of the quantum well location, exhibits a decrease in β when the well moved in the direction of the collector so that a trade-off between optical and electrical properties of transistor laser is evident. The trade-off is utilized in conjunction with previously reported experimental researches to find an optimum place of quantum well for desired performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chan R., Feng M., Holonyak N. Jr, James A., Walter G.: Collector current map of gain and stimulated recombination on the base quantum well transitions of a transistor laser. Appl. Phys. Lett. 88, 143508 (2006)

    Article  ADS  Google Scholar 

  • Faraji B., Pulfrey D.L., Chrostowski L.: Small-signal modeling of the transistor laser including the quantum capture and escape lifetimes. Appl. Phys. Lett. 93, 103509 (2008)

    Article  ADS  Google Scholar 

  • Feng M., Holonyak N. Jr., Chan R.: Quantum-well-base heterojunction bipolar light-emitting transistor. Appl. Phys. Lett. 84(11), 1952 (2004b)

    Article  ADS  Google Scholar 

  • Feng M., Holonyak N. Jr, Chan R., James A., Walter G.: Signal mixing in a multiple input transistor laser near threshold. Appl. Phys. Lett. 88, 063509 (2006a)

    Article  ADS  Google Scholar 

  • Feng M., Holonyak N. Jr., Hafez W.: Light-emitting transistor: light emission from InGaP/GaAs hetero- junction bipolar transistors. Appl. Phys. Lett. 84(1), 151 (2004a)

    Article  ADS  Google Scholar 

  • Feng M., Holonyak N. Jr, James A., Cimino K., Walter G., Chan R.: Carrier lifetime and modulation bandwidth of a quantum well AlGaAs/InGaP/GaAs/InGaAs transistor laser. Appl. Phys. Lett. 89, 113504 (2006b)

    Article  ADS  Google Scholar 

  • Feng M., Holonyak N. Jr, Then H.W., Walter G.: Charge control analysis of transistor laser operation. Appl. Phys. Lett. 91, 053501 (2007)

    Article  ADS  Google Scholar 

  • Feng M., Holonyak N. Jr, Walter G., Chan R.: Room temperature continuous wave operation of a heterojunction bipolar transistor laser. Appl. Phys. Lett. 87, 131103 (2005)

    Article  ADS  Google Scholar 

  • Kaatuzian, H.: Photonics, Vol. 1, p. 193. AmirKabir University of Technology press, Tehran, (2005)

  • Kaatuzian, H., Taghavi, I.: Dependence of transistor laser optical frequency response on quantum-well position. International conference on recent advances in microwave theory and applications. MICROWAVE 2008. 21–24 Nov. 2008 pp. 406–409. University of Rajasthan, Jaipur (2008)

  • Kaatuzian, H., Taghavi, I.: Chinese optics letters. 435–436. doi:10.3788/COL20090705.0435 (2009)

  • Then H.W., Walter G., Feng M., Holonyak N. Jr: Collector characteristics and the differential optical gain of a quantum-well transistor laser. Appl. Phys. Lett 91, 243508 (2007a)

    Article  ADS  Google Scholar 

  • Then H.W., Feng M., Holonyak N. Jr: Optical bandwidth enhancement by operation and modulation of the first excited state of a transistor laser. Appl. Phys. Lett. 91, 183505 (2007b)

    Article  ADS  Google Scholar 

  • Then H.W., Feng M., Holonyak N. Jr: Bandwidth extension by trade-off of electrical and optical gain in a transistor laser: three-terminal control. Appl. Phys. Lett. 94, 013509 (2009)

    Article  ADS  Google Scholar 

  • Walter, G., Holonyak, N. Jr., Feng, M., Chan, M.: Laser operation of a heterojunction bipolar light-emitting transistor. Appl. Phys. Lett. 85(20), 4768 (2004)

    Article  ADS  Google Scholar 

  • Walter, G., James, A., Holonyak, N. Jr., Feng, M., Chan, R.: Collector breakdown in the heterojunction bipolar transistor laser. Appl. Phys. Lett. 88, 232105 (2006)

    Article  ADS  Google Scholar 

  • Zhang L., Leburton J.-P.: Modeling of the transient characteristics of heterojunction bipolar transistor lasers. IEEE J. Quantum Electron. 45(4), 359–366 (2009). doi:10.1109/JQE.2009.2013215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Taghavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taghavi, I., Kaatuzian, H. Gain-bandwidth trade-off in a transistor laser: quantum well dislocation effect. Opt Quant Electron 41, 481–488 (2009). https://doi.org/10.1007/s11082-010-9384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-010-9384-0

Keywords

Navigation