Skip to main content
Log in

Computation of linear and nonlinear stationary states of photonic structures using modern iterative solvers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper we describe efficient methods to obtain the stationary states of linear and nonlinear photonic systems, which have gained particular interest in the field of integrated and nonlinear optics. While the methods presented are directly applicable to optical physics, they are also general and should be of interest in a broad range of phenomena presently under study in other areas of physics and engineering. The strategy consists in combining the use of classical methods, such as inverse iteration or the Newton method, together with modern, nonstationary linear solvers, such as SYMMLQ or GMRES, in order to obtain efficient numerical computations to problems involving large matrices. We have selected several example problems in order to discuss the practical implementation details, not normally described in the present literature. Moreover, the problems we have selected provide a backdrop to contrast and motivate the use of different methods for systems which are symmetric and non-symmetric, single and multi-component, and also real and complex. Information relative to numerical performance of the different algorithms, including a survey for a nonsymmetric problem, which requires the adjustment of a restarting parameter for the GMRES algorithm, is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett R., Berry M., Chan T.F., Demmel J., Donato J.M., Dongarra J., Eijkhout V., Pozo R., Romine C., van der H. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA

    Google Scholar 

  • Bellavia S., Morini B. (2001). A globally convergent Newton-GMRES subspace method for systems of nonlinear equations. SIAM J. Sci. Comput 23(3): 940–960

    Article  MATH  MathSciNet  Google Scholar 

  • Demmel J.W. (1997). Applied Numerical Linear Algebra. SIAM, Philadelphia, PA

    MATH  Google Scholar 

  • Dennis J.E. Jr., Schnabel R.B. (1983). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall series in computational mathematics, Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Dul F.A. (1998). MINRES and MINERR are better than SYMMLQ in eigenpair computations. SIAM J. Sci. Comput. 19(6): 1767–1782

    Article  MATH  MathSciNet  Google Scholar 

  • Ferrando A., Zacarés M., Fernández de Córdoba P., Binosi D., Monsoriu J. (2003). Spatial soliton formation in photonic crystal fibers. Opt. Exp. 11(5): 452–459

    Article  ADS  Google Scholar 

  • Ferrando A., Zacarés M., Fernández de Córdoba P., Binosi D., Monsoriu J. (2004). Vortex solitons in photonic crystal fibers. Opt. Exp. 12(5): 817–822

    Article  ADS  Google Scholar 

  • Freund R.W., Nachtigal N.M. (1991). QMR: A quasi-minimal residual method for non hermitian linear systems. Num. Math 60(3): 315–339

    Article  MATH  MathSciNet  Google Scholar 

  • Golub G.H., Van Loan C.F. (1989). Matrix Computations. The Johns Hopkins University Press, London

    MATH  Google Scholar 

  • Greenbaum A. (1997). Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, PA

    MATH  Google Scholar 

  • Ipsen I.C.F. (1997). Computing an eigenvector with inverse iteration. SIAM Rev. 39(2): 254–291

    Article  MATH  MathSciNet  Google Scholar 

  • Jablonski T.F., Sowinski M.J. (1989). Analysis of dielectric guiding structures by the iterative eigenfunction expansion method. IEEE Trans. Microwave Theory Tech. 37(1): 63–70

    Article  ADS  Google Scholar 

  • Kivshar Y.S., Agrawal G.P. (2003). Optical Solitons: from Fibers to Photonic Crystals. Academic Press, San Diego

    Google Scholar 

  • Knight J.C. (2003). Photonic crystal fibres. Nature 424: 847–851

    Article  ADS  Google Scholar 

  • Knoll D.A., Rider W.J. (1999). A multigrid preconditioned Newton-Krylov method. SIAM J. Sci. Comput. 21(2): 691–710

    Article  MATH  MathSciNet  Google Scholar 

  • Meurant G. (1999). Computer Solution of Large Linear Systems. Elsevier Science B. V., Amsterdam

    MATH  Google Scholar 

  • Nachtigal N.M., Reddy S.C., Trefethen L.N. (1992). How fast are nonsymmetric matrix iterations. SIAM J. Matrix Anal. Appl. 13(3): 778–795

    Article  MATH  MathSciNet  Google Scholar 

  • Paige C.C., Saunders M.A. (1975). Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4): 617–629

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. (1992). Numerical Recipes in C. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Russell P. (2003). Photonic crystal fibers. Science 299: 358–362

    Article  ADS  Google Scholar 

  • Saad M.H., Schultz Y. (1986). GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci Statist. Comput. 7(3): 856–869

    Article  MATH  MathSciNet  Google Scholar 

  • Salgueiro J.R., Kivshar Y.S. (2005). Nonlinear dual-core photonic crystal fiber couplers. Opt. Lett. 30(14): 1858–1860

    Article  ADS  Google Scholar 

  • Salgueiro J.R, Kivshar Y.S, Pelinovski D.E, Simón V., Michinel H. (2005). Spatial vector solitons in nonlinear photonic crystal fibers. Stud. Appl. Math. 115: 157–171

    Article  MathSciNet  MATH  Google Scholar 

  • Sonneveld P. (1989). CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 10(1): 36–52

    Article  MATH  MathSciNet  Google Scholar 

  • Szyld D.B. (1988). Ctiteria for combining inverse and Rayleigh quotient iteration. SIAM J. Numer. Anal. 25(6): 1369–1375

    Article  MATH  MathSciNet  Google Scholar 

  • Tamir T. (ed.) (1990) Guided-Wave Optoelectronics. 2nd ed. Springer-Verlag, Berlin

    Google Scholar 

  • van der H.A. (1992). Bi-CGSTAB: A fast and smooth converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput 13(2): 631–644

    Article  MATH  MathSciNet  Google Scholar 

  • Wilkinson J.H. (1965). The algebraic eigenvalue problem. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Young D.M. (1971). Iterative Solution of Large Linear Systems. Academic Press, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ramón Salgueiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgueiro, J.R., Olivieri, D. & Michinel, H. Computation of linear and nonlinear stationary states of photonic structures using modern iterative solvers. Opt Quant Electron 39, 239–260 (2007). https://doi.org/10.1007/s11082-007-9077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9077-5

Keywords

Navigation