Skip to main content
Log in

Tunable subnanosecond laser pulse generation using an active mirror concept

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We report (theory, experimental check) an improved approach for generation of a tunable, subnanosecond pulse (0.1–0.4 ns), based on a single pulsation (“spike”) separation from the transient oscillations in a dye laser with active mirror (AMIR). A pumping by 20–50 ns pulses from Q-switched Nd:YAG laser is considered. The separation is in original, two-spectral selective channels cavity, where the forced by AMIR quenched generation at one of the wavelength stops initially started spiking generation at the other wavelength after the first spike development. The AMIR quickly starts the quenching generation at a precisely controlled moment and with necessary intensity thus assuring the desired separation. An advantage is a high reproducibility of the separation for high (~250%) pump power fluctuations combined with tuning in large range (~20 nm). To obtain such an operation we form ~1 ns leading front pump pulse by electrooptical temporal cutting of the input pump pulse and use an optical delay line. This increases also a few times the power in the separated spike (to be ~100 kW). Our approach widens the combinations of lasers for effective applications of spike separation technique (dye lasers excited by Q-switched solid-state or Cu-vapor lasers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreoni A., Benetti P., Sacchi C.A. (1975). Subnanosecond pulses from a single-cavity dye laser. Appl. Phys. 7: 61

    Article  ADS  Google Scholar 

  • Braverman L. (1975). Controlled passive Q switch for the N2– laser–pumped dye. Appl. Phys. Lett. 27: 603

    Article  ADS  Google Scholar 

  • Carpintero, G., Lamela, H.: Non linear dynamics of modulated laser diodes, Recent Res. Quantum Electronics, Transworld Research Network T.C. 36/248 (1), Trivandrum-8, India, 2, 55-83, 2000

  • Cubeddu R., Polloni R., Sacchi C.A. (1977). A simple and reliable short–pulse dye laser. Appl. Phys. 13: 109

    Article  ADS  Google Scholar 

  • Delev A., Deneva M., Nenchev M., Stoykova E., Slavov D. (2001). Tunable subnanosecond pulse generation in a dye laser using overlaped pump pulses. Rev. Sci. Imtrum. 72: 1640

    Article  ADS  Google Scholar 

  • Deneva M., Slavov D., Stoykova E., Nenchev M. (1997). Improved self-injection locking method for spectral control of dye and Ti3+:Al2O3 lasers using two-step pulse pumping. Opt. Commun. 139: 287

    Article  ADS  Google Scholar 

  • Ganniel U., Hardy A. (1976). Narrow–band tunable, subnanosecond pulse generation in injection locked dye laser system. Opti. Commun. 19: 1914

    Google Scholar 

  • Gorris-Nveux M., Nenchev M., Barbe R., Keller J.C. (1995). A Two-wavelength passively self-injection locked, CW Ti3+ : Al2O3 laser. IEEE J. Quantum Electron. 31: 1253

    Article  Google Scholar 

  • Lei, Z., Fucheng, L.: Pulse shortening of a copper bromide laser by quenching of resonator transient. Appl. Phys. Lett., 58, 2329 (1991)

    Google Scholar 

  • Lin C. (1975). Studies of relaxation oscillations in organic dye lasers. IEEE J. Quantum. Electron. QE-11: 602

    ADS  Google Scholar 

  • Lin C., Shank C.V. (1975). Subnanosecond tunable dye laser pulse generation by controlled resonator transient. Appl. Phys. Lett. 26: 389

    Article  ADS  Google Scholar 

  • Louyer Y., Wallerand J.P., Himbert M., Deneva M., Nenchev M. (2003). Two-wavelength, passive self-injection controlled operation of diode-pumped CW YB-doped crystal lasers. Appl.Opt. 42: 5463

    ADS  Google Scholar 

  • Miyazoe Y., Maeda M. (1971). On the spiking phenomenon in organic dye laser. IEEE J. Quantum Electron. QE-7: 36

    Article  Google Scholar 

  • Nenchev, M., Gizbrekht, A.: Two-frequency, flash-lamp pumped dye laser using a high effective intracavity bem-splitter, Sov. J. Appl. Spectroskopy, 39, 208, 1983; Nenchev, M.: Two-wavelength laser with interference wedge selector-channel coupler, Bulgarian Patent, IIR-Sofia, No 53347, 1981

  • Nenchev M., Stoykova E. (1993). Interference wedge properties relevant to laser applications: transmission and reflection of restricted light beams. Opt. Quantum Electron. 25: 789

    Article  Google Scholar 

  • Schäfer F.P., Wenchong L., Szatmári S. (1983). Short UV laser pulse generation by quenching of resonator transient. Appl. Phys. B-32: 123

    ADS  Google Scholar 

  • Stoykova E., Nenchev M. (1996). Reflection and transmission of the unequal mirror interference wedge. Opt. Quantum Electron. 28: 155

    Article  Google Scholar 

  • Svelto, O.: Principles of lasers, 4th eds., Translated by Hanna, D. Plenum Press, New York, 8-9, 250-300, 1998

  • Szatmári S., Schäfer F.P. (1984). Excimer–laser–pumped ps–dye laser. Appl. Phys. B-33: 95

    ADS  Google Scholar 

  • Veith G., Schmidt A.J. (1979). Generation of tunable subnanosecond laser pulses with a nitrogen laser pumped dye laser amplifier system. Opt. Commun. 30: 437

    Article  Google Scholar 

  • Wyatt R. (1978). Narrow linewidth, short pulse operation of a nitrogen-laser - pumped dye laser. Opt. Commun. 26: 429

    Article  ADS  Google Scholar 

  • Zeller J., Rudolph W., Sheik– Bahae M. (1998). Theoretical and experimental investigation of a quenched cavity laser with saturable absorber. Appl. Phys. B-66: 295

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita A. Deneva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deneva, M.A., Uzunova, P.I. & Nenchev, M.N. Tunable subnanosecond laser pulse generation using an active mirror concept. Opt Quant Electron 39, 193–212 (2007). https://doi.org/10.1007/s11082-007-9074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9074-8

Keywords

Navigation