Skip to main content
Log in

Mach–Zehnder interferometers in photonic crystals

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Photonic crystal technology allows the creation of optical waveguides with low sharp-bending losses as well as ultra-low group velocity. This last property is particularly interesting to develop highly-compact optical devices based on the controlled modification of the optical phase of the signals traveling through the waveguides. Among these devices, the Mach–Zehnder interferometer acquires fundamental importance because it can be used as a building block of more complex optical devices and functionalities such as optical filters, wavelength demultiplexers, channels interleavers, intensity modulators, switches and optical gates. In this paper, the performance of a Mach–Zehnder interferometer consisting of two coupled-cavity waveguides with different lengths created in a two-dimensional photonic crystal is theoretically analyzed. We also provide simulation results using a finite-difference time-domain code that confirm the theoretical analysis. The main limitations in the performance of the structure are addressed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Bayindir B. Temelkuran E. Ozbay (2000a) Phys. Rev. B 62 2247 Occurrence Handle10.1103/PhysRevB.62.R2247

    Article  Google Scholar 

  • M. Bayindir B. Temelkuran E. Ozbay (2000b) Appl. Phys. Lett 77 3902 Occurrence Handle10.1063/1.1332821 Occurrence Handle1:CAS:528:DC%2BD3cXoslSisrk%3D

    Article  CAS  Google Scholar 

  • F. Cuesta A Griol A. Martínez J. Martí (2003) Electron. Lett 39 455 Occurrence Handle10.1049/el:20030317

    Article  Google Scholar 

  • S. Fan S.G. Johnson J.D. Joannopoulos C Manolatou H.A. Haus (2001) J. Opt. Soc. Am. B 18 162 Occurrence Handle1:CAS:528:DC%2BD3MXht1ekurs%3D

    CAS  Google Scholar 

  • J.D. Joannopoulos R.D. Meade J.N. Winn (1995) Photonic Crystals: Molding the flow of light Princeton University Press Princenton, NJ

    Google Scholar 

  • S.G. Johnson S Fan P.R. Villeneuve J.D. Joannopoulos (1999) Phys. Rev. B 60 5751 Occurrence Handle10.1103/PhysRevB.60.5751 Occurrence Handle1:CAS:528:DyaK1MXlt1yjt7o%3D

    Article  CAS  Google Scholar 

  • S.G. Johnson S Fan P.R. Villeneuve J.D. Joannopoulos (2000) Phys. Rev. B 62 8212 Occurrence Handle10.1103/PhysRevB.62.8212 Occurrence Handle1:CAS:528:DC%2BD3cXmslWrtLc%3D

    Article  CAS  Google Scholar 

  • S.G. Johnson J.D. Joannopoulos (2001) Opt. Express 8 173

    Google Scholar 

  • T.J. Karle D.H. Brown R Wilson M Steer T.F. Krauss (2002) IEEE J. Select. Topics Quant. Electron 8 909 Occurrence Handle1:CAS:528:DC%2BD38XotVGltbk%3D

    CAS  Google Scholar 

  • T.F. Krauss R.M. Rue Particlede la S. Brand (1996) Nature 382 699

    Google Scholar 

  • S. Lan K Kanamoto T Yang S Nishikawa Y Sugimoto N Ikeda H Nakamura K Asakawa H. Ishikawa (2003) Phys. Rev. B 67 115208

    Google Scholar 

  • E. Lidorikis M.M. Sigalas E.N. Economou C.M. Soukoulis (1998) Phys. Rev. Lett 81 1405 Occurrence Handle1:CAS:528:DyaK1cXltFCmt7o%3D

    CAS  Google Scholar 

  • S.Y. Lin E Chow J. Bur S.G. Johnson J.D. Joannopoulos (2002) Opt. Lett 27 1400 Occurrence Handle1:CAS:528:DC%2BD38XntVeitL4%3D

    CAS  Google Scholar 

  • A. Martínez A Griol P Sanchis J. Martí (2003) Opt. Lett 28 405 Occurrence Handle12659261

    PubMed  Google Scholar 

  • A. Mekis J.C. Chen I. Kurland S. Fan P.R. Villeneuve J.D. Joannopoulos (1996) Phys. Rev. Lett 77 3787 Occurrence Handle1:CAS:528:DyaK28XmsVChtbk%3D Occurrence Handle10062308

    CAS  PubMed  Google Scholar 

  • R. Ramaswami K.N. Sivajaran (1998) Optical Networks: a practical perspective Academic Press San Diego, CA

    Google Scholar 

  • P. Sanchis J. García A. Martínez F. Cuesta A. Griol J. Martí (2003) Opt. Lett 28 1903 Occurrence Handle1:STN:280:DC%2BD3srhtV2isA%3D%3D Occurrence Handle14587770

    CAS  PubMed  Google Scholar 

  • M.H. Shih W.J. Kim Kuang Wan J.R. Cao H. Yukawa S.J. Choi J.D. O’Brien P.D. Dapkus (2004) Appl. Phys. Lett 84 460 Occurrence Handle1:CAS:528:DC%2BD2cXmslamsQ%3D%3D

    CAS  Google Scholar 

  • M. Soltani A. Adibi Y. Xu R.K. Lee (2003) Opt. Lett 28 1978 Occurrence Handle14587795

    PubMed  Google Scholar 

  • A. Taflove (1995) Computational Electrodynamics Artech House Boston, MA

    Google Scholar 

  • M. Tokushima H. Yamada (2001) Electron. Lett 37 1454

    Google Scholar 

  • E. Yablonovitch (1987) Phys. Rev. Lett 58 2059 Occurrence Handle10.1103/PhysRevLett.58.2059 Occurrence Handle1:CAS:528:DyaL2sXktFGit7Y%3D Occurrence Handle10034639

    Article  CAS  PubMed  Google Scholar 

  • E. Yablonovitch T.J. Gmitter R.D. Meade A.M. Rappe K.D. Brommer J.D. Joannopoulos (1991) Phys. Rev. Lett 67 3380 Occurrence Handle1:CAS:528:DyaK38XivFCltA%3D%3D Occurrence Handle10044719

    CAS  PubMed  Google Scholar 

  • A. Yariv Y. Xu R.K. Lee A. Scherer (1999) Opt. Lett 24 711

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, A., Sanchis, P. & Martí, J. Mach–Zehnder interferometers in photonic crystals. Opt Quant Electron 37, 77–93 (2005). https://doi.org/10.1007/s11082-005-1124-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-005-1124-5

Keywords

Navigation