Skip to main content
Log in

GoNDEF: an exact method to generate all non-dominated points of multi-objective mixed-integer linear programs

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Most real-world problems involve multiple conflicting criteria. These problems are called multi-criteria/multi-objective optimization problems (MOOP). The main task in solving MOOPs is to find the non-dominated (ND) points in the objective space or efficient solutions in the decision space. A ND point is a point in the objective space with objective function values that cannot be improved without worsening another objective function. In this paper, we present a new method that generates the set of ND points for a multi-objective mixed-integer linear program (MOMILP). The Generator of ND and Efficient Frontier (GoNDEF) for MOMILPs finds that the ND points represented as points, line segments, and facets consist of every type of ND point. First, the GoNDEF sets integer variables to the values that result in ND points. Fixing integer variables to specific values results in a multi-objective linear program (MOLP). This MOLP has its own set of ND points. A subset of this set establishes a subset of the ND points set of the MOMILP. In this paper, we present an extensive theoretical analysis of the GoNDEF and illustrate its effectiveness on a set of instance problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that point \({\textcircled{{\small{D}}}}\) is not included in the set of ND points since \({\textcircled{{\small{D}}}}\) is dominated by \({\textcircled{{\small{A}}}}\). Point \({\textcircled{{\small{D}}}}\) is a weakly ND point. Then, we do not address this type of points.

  2. This study provides a similar formulation to minimize Tchebycheff distance between the points in the objective space and the Ideal point.

  3. Note that \(y \in {\mathbb{Z}}^q \backslash \{{\mathbb{Z}}^q \backslash \{y^*\}\}\) is equivalent to fixing y to \(y^*\).

  4. Note that \(\lambda x^{\prime }+(1-\lambda )x^{\alpha } \in S(\bar{y})\) since \(S(\bar{y})\) is a convex set.

  5. This number is the computed number of the efficient integer solutions for the instances terminated due to the time limit.

References

  • Abounacer R, Rekik M, Renaud J (2014) An exact solution approach for multi-objective location-transportation problem for disaster response. Comput Oper Res 41:83–93

    Article  MathSciNet  MATH  Google Scholar 

  • Alves MJ, Clımaco J (2000) An interactive reference point approach for multiobjective mixed-integer programming using branch-and-bound. Eur J Oper Res 124(3):478–494

    Article  MathSciNet  MATH  Google Scholar 

  • Alves MJ, Clímaco J (2007) A review of interactive methods for multiobjective integer and mixed-integer programming. Eur J Oper Res 180(1):99–115

    Article  MathSciNet  MATH  Google Scholar 

  • Alves MJ, Costa JP (2016) Graphical exploration of the weight space in three-objective mixed integer linear programs. Eur J Oper Res 248(1):72–83

    Article  MathSciNet  MATH  Google Scholar 

  • Anvari S, Turkay M (2017) The facility location problem from the perspective of triple bottom line accounting of sustainability. Int J Prod Res 55(21):6266–6287

    Article  Google Scholar 

  • Armand P (1993) Finding all maximal efficient faces in multiobjective linear programming. Math Program 61(1–3):357–375

    Article  MathSciNet  MATH  Google Scholar 

  • Armand P, Malivert C (1991) Determination of the efficient set in multiobjective linear programming. J Optim Theory Appl 70(3):467–489

    Article  MathSciNet  MATH  Google Scholar 

  • Belotti P, Soylu B, Wiecek MM (2013) A branch-and-bound algorithm for biobjective mixed-integer programs. Optimization Online. http://www.optimization-online.org/DB_FILE/2013/01/3719.pdf

  • Boland N, Charkhgard H, Savelsbergh M (2014) A simple and efficient algorithm for solving three objective integer programs. Optimization Online. http://www.optimization-online.org/DB_FILE/2014/09/4534.pdf

  • Boland N, Charkhgard H, Savelsbergh M (2015) A criterion space search algorithm for biobjective mixed integer programming: the triangle splitting method. INFORMS J Comput 27(4):597–618

    Article  MathSciNet  MATH  Google Scholar 

  • Boland N, Charkhgard H, Savelsbergh M (2016) The l-shape search method for triobjective integer programming. Math Program Comput 8(2):217–251

    Article  MathSciNet  MATH  Google Scholar 

  • Boland N, Charkhgard H, Savelsbergh M (2017a) A new method for optimizing a linear function over the efficient set of a multiobjective integer program. Eur J Oper Res 260(3):904–919

    Article  MathSciNet  MATH  Google Scholar 

  • Boland N, Charkhgard H, Savelsbergh M (2017b) The quadrant shrinking method: a simple and efficient algorithm for solving tri-objective integer programs. Eur J Oper Res 260(3):873–885

    Article  MathSciNet  MATH  Google Scholar 

  • Can E, Erol S (2014) A multi-objective mixed integer linear programming model for energy resource allocation problem: the case of turkey. Gazi Univ J Sci 27(4):1157–1168

    Google Scholar 

  • Charkhgard H, Takalloo M, Haider Z (2018) Bi-objective autonomous vehicle repositioning problem with travel time uncertainty http://www.optimization-online.org/DB_HTML/2017/06/6104.html

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley, New York

    MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182–197

    Article  Google Scholar 

  • Ehrgott M (2006) A discussion of scalarization techniques for multiple objective integer programming. Ann Oper Res 147(1):343–360

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrgott M, Puerto J, Rodriguez-Chia A (2007) Primal-dual simplex method for multiobjective linear programming. J Optim Theory Appl 134(3):483–497

    Article  MathSciNet  MATH  Google Scholar 

  • Evans JP, Steuer R (1973) A revised simplex method for linear multiple objective programs. Math Program 5(1):54–72

    Article  MathSciNet  MATH  Google Scholar 

  • Fattahi A, Turkay M (2018) A one direction search method to find the exact nondominated frontier of biobjective mixed-binary linear programming problems. Eur J Oper Res 266(2):415–425

    Article  MathSciNet  MATH  Google Scholar 

  • Gobbi M (2013) A k, k-\(\varepsilon\) optimality selection based multi objective genetic algorithm with applications to vehicle engineering. Optim Eng 14(2):345–360

    Article  MathSciNet  MATH  Google Scholar 

  • Hooker J (2011) Logic-based methods for optimization: combining optimization and constraint satisfaction, vol 2. Wiley, New York

    MATH  Google Scholar 

  • Hooker JN (1994) Logic-based methods for optimization. In: Principles and practice of constraint programming. Springer, Berlin, Heidelberg, pp 336–349

    Chapter  Google Scholar 

  • Jahanshahloo GR, Hosseinzadeh F, Shoja N, Tohidi G (2005) A method for generating all efficient solutions of 0–1 multi-objective linear programming problem. Appl Math Comput 169(2):874–886

    MathSciNet  MATH  Google Scholar 

  • Jorge JM (2009) An algorithm for optimizing a linear function over an integer efficient set. Eur J Oper Res 195(1):98–103

    Article  MathSciNet  MATH  Google Scholar 

  • Lokman B, Köksalan M (2013) Finding all nondominated points of multi-objective integer programs. J Glob Optim 57(2):347–365

    Article  MathSciNet  MATH  Google Scholar 

  • Lokman B, Köksalan M (2014) Finding highly preferred points for multi-objective integer programs. IIE Trans 46(11):1181–1195

    Article  Google Scholar 

  • Mavrotas G, Diakoulaki D (2005) Multi-criteria branch and bound: a vector maximization algorithm for mixed 0–1 multiple objective linear programming. Appl Math Comput 171(1):53–71

    MathSciNet  MATH  Google Scholar 

  • Mavrotas G, Florios K (2013) An improved version of the augmented \(\varepsilon\)-constraint method (augmecon2) for finding the exact pareto set in multi-objective integer programming problems. Appl Math Comput 219(18):9652–9669

    MathSciNet  MATH  Google Scholar 

  • Miettinen K, Hakanen J, Podkopaev D (2016) Interactive nonlinear multiobjective optimization methods. In: Multiple criteria decision analysis. Springer, New York, pp 927–976

    Chapter  Google Scholar 

  • Nadarajah SK, Tatossian C (2010) Multi-objective aerodynamic shape optimization for unsteady viscous flows. Optim Eng 11(1):67–106

    Article  MathSciNet  MATH  Google Scholar 

  • Najafi M, Eshghi K, Dullaert W (2013) A multi-objective robust optimization model for logistics planning in the earthquake response phase. Transp Res Part E: Logist Transp Rev 49(1):217–249

    Article  Google Scholar 

  • Özlen M, Azizoğlu M (2009) Multi-objective integer programming: a general approach for generating all non-dominated solutions. Eur J Oper Res 199(1):25–35

    Article  MathSciNet  MATH  Google Scholar 

  • Özlen M, Burton BA, MacRae CA (2014) Multi-objective integer programming: an improved recursive algorithm. J Optim Theory Appl 160(2):470–482

    Article  MathSciNet  MATH  Google Scholar 

  • Özpeynirci Ö, Köksalan M (2010) An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs. Manag Sci 56(12):2302–2315

    Article  MATH  Google Scholar 

  • Pascual-González J, Jiménez-Esteller L, Guillén-Gosálbez G, Siirola JJ, Grossmann IE (2016) Macro-economic multi-objective input-output model for minimizing CO2 emissions: application to the US economy. AIChE J 62(10):3639–3656

    Article  Google Scholar 

  • Przybylski A, Gandibleux X, Ehrgott M (2010) A recursive algorithm for finding all nondominated extreme points in the outcome set of a multiobjective integer programme. INFORMS J Comput 22(3):371–386

    Article  MathSciNet  MATH  Google Scholar 

  • Rudloff B, Ulus F, Vanderbei R (2017) A parametric simplex algorithm for linear vector optimization problems. Math Program 163(1–2):213–242

    Article  MathSciNet  MATH  Google Scholar 

  • Saule C, Giegerich R (2015) Pareto optimization in algebraic dynamic programming. Algorithms Mol Biol 10(1):1

    Article  Google Scholar 

  • Sayin S (1996) An algorithm based on facial decomposition for finding the efficient set in multiple objective linear programming. Oper Res Lett 19(2):87–94

    Article  MathSciNet  MATH  Google Scholar 

  • Schechter M (2005) A correction to the connectedness of the Evans–Steuer algorithm of multiple objective linear programming. Found Comput Dec Sci 30(4):351–360

    MathSciNet  MATH  Google Scholar 

  • Soylu B, Yıldız GB (2016) An exact algorithm for biobjective mixed integer linear programming problems. Comput Oper Res 72:204–213

    Article  MathSciNet  MATH  Google Scholar 

  • Steuer RE (1994) Random problem generation and the computation of efficient extreme points in multiple objective linear programming. Comput Optim Appl 3(4):333–347

    Article  MathSciNet  MATH  Google Scholar 

  • Steuer RE, Choo EU (1983) An interactive weighted Tchebycheff procedure for multiple objective programming. Math Program 26(3):326–344

    Article  MathSciNet  MATH  Google Scholar 

  • Stidsen T, Andersen KA, Dammann B (2014) A branch and bound algorithm for a class of biobjective mixed integer programs. Manag Sci 60(4):1009–1032

    Article  Google Scholar 

  • Sylva J, Crema A (2004) A method for finding the set of non-dominated vectors for multiple objective integer linear programs. Eur J Oper Res 158(1):46–55

    Article  MathSciNet  MATH  Google Scholar 

  • Tohidi G, Razavyan S (2012) An l1-norm method for generating all of efficient solutions of multi-objective integer linear programming problem. J Ind Eng Int 8(1):1–8

    Article  Google Scholar 

  • Vadenbo C, Hellweg S, Guillén-Gosálbez G (2014) Multi-objective optimization of waste and resource management in industrial networks—part I: model description. Resour Conserv Recycl 89:52–63

    Article  Google Scholar 

  • Vincent T, Seipp F, Ruzika S, Przybylski A, Gandibleux X (2013) Multiple objective branch and bound for mixed 0–1 linear programming: corrections and improvements for the biobjective case. Comput Oper Res 40(1):498–509

    Article  MathSciNet  MATH  Google Scholar 

  • Wiecek MM, Ehrgott M, Engau A (2016) Continuous multiobjective programming. Springer, New York, pp 739–815

    Google Scholar 

  • Yu PL, Zeleny M (1975) The set of all nondominated solutions in linear cases and a multicriteria simplex method. J Math Anal Appl 49(2):430–468

    Article  MathSciNet  MATH  Google Scholar 

  • Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications, vol 63. Ithaca, Shaker

    Google Scholar 

Download references

Acknowledgements

Financial support for this work by TUPRAS under grant OS.00054 is gratefully acknowledged. MT gratefully acknowledges the computational infrastructure support provided by the IBM Corporation through the IBM SUR award. The authors acknowledge valuable comments and suggestions provided by Emre Alper Yıldırım, Emre Mengi, Seyed Mojtaba Hosseini, Ali Fattahi, Matthias Ehrgott, and referees of Optimization and Engineering journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Türkay.

Appendices

Appendix 1: The formulation of our illustrative instance given in Fig. 1

We provide a mathematical formulation for Fig. 1. Note that there may be other formulations to provide a feasible region corresponding to Fig. 1. Let M be a sufficiently large positive number, \(x=(x_1,x_2,x_3) \ge 0\), and \(y=(y_1,y_2,y_3) \in \{0, 1\}^3\).

$$\begin{aligned} & \max \quad z(x,y)=(x_1,x_2,x_3) \\ & \text{s.t.} \end{aligned}$$
$$\begin{aligned} & x_1 \le 6+M(1-y_1),\\& x_2 \le 6+M(1-y_1),\\& 7-M(1-y_1) \le x_1+x_2 \le 9+M(1-y_1),\\& 4-M(1-y_1) \le x_3 \le 10+M(1-y_1),\end{aligned}$$
$$\begin{aligned} & -6-M(1-y_2) \le x_1 - x_2 \le 8+M(1-y_2),\\& 8-M(1-y_2) \le x_1 + x_2,\\& 3-M(1-y_2) \le x_3,\\& 3x_1+3x_2+2x_3 \le 42+M(1-y_2), \end{aligned}$$
$$\begin{aligned} & 4-M(1-y_3) \le x_1 \le 8+M(1-y_3),\\& x_2 \le 2+M(1-y_3),\\& x_3 \le 5+M(1-y_3),\\& y_1+y_2+y_3 = 1,\\ & x_i \ge 0, \; \forall i=1,2,3, \end{aligned}$$
$$\begin{aligned} & y_i \in \{0,1\}, \; \forall i=1,2,3.\end{aligned}$$

Appendix 2: Generating instance problems

In the following mathematical formulation we have k objective functions, m constraints, q binary variables, and n continuous positive variables. The size of instance is displayed as \(k \times m \times (n+q)\). \(U_j\) is an integer value that shows the upper bound of variable \(y_j\) for \(j=1,\ldots ,q\).

$$\begin{aligned} max \; \; z_t(x,y)= & \sum _{i=1}^{n} c_i^t x_i + \sum _{j=1}^{q} f_j^t y_j, \; \forall t=1, \ldots , k \\ {\text{s.t.}}&\\ &\sum _{i=1}^{n} a_{ij} x_i + a_j^{\prime } y_j \le b_j, \; \forall j=1, \ldots ,q, \\ & \sum _{i=1}^{n} a_{ij} x_i \le b_j, \; \forall j=q + 1, \ldots , m-1,\\ & \sum _{j=1}^{q} y_j \le \frac{q}{3},\\ & x_i \in {\mathcal{R}}^{+}, \; \forall \; i=1, \ldots , n,\\ & y_j \in \{0,1, \ldots , U_j\}, \; \forall \; j=1, \ldots , q,\\ \end{aligned}$$

where, in the described benchmarks, the objective function coefficients of the continuous variables, binary variables, the right hand sides of the constraints, and the matrix of coefficients (for both continuous and binary variables) are drawn from uniformly distributed random numbers in the ranges [\(-10, 10\)], [\(-200, 200\)], [50, 100], and [\(-1, 20\)], respectively. In addition, the sparsity of coefficient matrix is 40 percent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasmi, S.A.B., Türkay, M. GoNDEF: an exact method to generate all non-dominated points of multi-objective mixed-integer linear programs. Optim Eng 20, 89–117 (2019). https://doi.org/10.1007/s11081-018-9399-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-018-9399-0

Keywords

Navigation