Skip to main content
Log in

A firefly algorithm for the design of force and placement of friction dampers for control of man-induced vibrations in footbridges

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

It is known that the use of passive energy dissipation devices, as friction dampers, reduces significantly the dynamic response of structures subjected to dynamic actions. However, the parameters of each damper as well as the best placement of these devices remain difficult to determine. Although some studies on optimization of tuned mass damper and viscous/viscoelastic dampers are being developed, works on optimum use of friction dampers is still lacking. Thus, in this paper, the simultaneous optimization of force and placement of friction dampers is proposed. To solve this optimization problem, the recently developed firefly algorithm is employed, which is able to deal with non-convex optimization problems, involving mixed discrete and continuous variables. For illustration purposes, two common footbridges are analyzed, in which the cost function is to minimize the maximum acceleration of the structures, whereas forces and positions of friction dampers are the design variables. The results showed that the proposed method was able to determine the optimum friction forces of each damper as well as their best positions in the structures. The maximum acceleration was reduced in more than 95 % for the Warren truss footbridge, with three friction dampers, and in more than 92 % for the Pratt truss footbridge, with only two friction dampers. In addition, the proposed methodology is quite general and it is believed that it can be recommended as an effective tool for optimum design of friction dampers for structural response control. Thus, this paper shows that the design of friction dampers can be done in a safe and economic way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Arfiadi Y, Hadi MNS (2011) Optimum placement and properties of tuned mass dampers using hybrid genetic algorithms. Int J Optim Civil Eng 1:167–187

    Google Scholar 

  • Aydin E (2012) Optimal damper placement based on base moment in steel building frames. J Constr Steel Res 79:216–225. doi:10.1016/j.jcsr.2012.07.011

    Article  Google Scholar 

  • Aydin E, Boduroglu MH, Guney D (2007) Optimal damper distribution for seismic rehabilitation of planar building structures. Eng Struct 29:176–185

    Article  Google Scholar 

  • Bachmann H, Ammann W (1987) Vibrations in structures induced by man and machine. 176p. IABSE-AIPC-IVBH, ETH—Hönggerberg, CH—8093, Zürich, Switzerland. ISBN: 3-85748-052-X

  • Bachmann H et al (1995) Vibrations problems in structures: practical guidelines. p 240. Basel, Boston, Berlin, Birkhäuser. ISBN-13: 978-3-0348-9955-0

  • Brzeski P, Perlikowski P, Kapitaniak T (2014) Numerical optimization of tuned mass absorbers attached to strongly nonlinear Duffing oscillator. Commun Nonlinear Sci Numer Simul 19(1):298–310. doi:10.1016/j.cnsns.2013.06.001

    Article  MathSciNet  Google Scholar 

  • Chandrasekaran K, Simon SP (2012) Network and reliability constrained unit commitment problem using binary real coded firefly algorithm. Int J Electr Power Energy Syst 43:921–932

    Article  Google Scholar 

  • Chen G, Wu J (2001) Optimal placement of multiple tune mass dampers for seismic structures. J Struct Eng 127:1054–1062

    Article  Google Scholar 

  • Coelho LS, Mariani VC (2012) Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller tuning. Comput Math Appl 64:2371–2382. doi:10.1016/j.camwa.2012.05.007

    Article  MATH  MathSciNet  Google Scholar 

  • Curadelli RO, Riera JD (2004) Reliability based assessment of the effectiveness of metallic dampers in buildings under seismic excitations. Eng Struct 26(13):1931–1938

    Article  Google Scholar 

  • Curadelli RO, Miguel LFF, and Riera JD (2003) Consideraciones sobre el uso de amortiguadores en el proyeto de estructuras sismorresistentes. XI SIBIS e 6º EIPAC—Décimo Primer Seminario Iberoamericano de Ingeniería Sísmica y Sexto Encuentro de Investigadores y Profesionales Argentinos de la Construcción, Mendoza, Argentina

  • Curadelli RO, Riera JD, and Miguel LFF (2006) Seismic up-grading of existing structures through the introduction of external dampers. In: ECEES—first European conference on earthquake engineering and seismology, Genebra

  • Dehghan-Niri E, Zahrai SM, Mohtat A (2010) Effectiveness-robustness objectives in MTMD system design: An evolutionary optimal design methodology. Struct Control Health Monit 17:218–236. doi:10.1002/stc.297

    Article  Google Scholar 

  • Desu NB, Deb SK, Dutta A (2006) Coupled tuned mass dampers for control of coupled vibrations in asymmetric buildings. Struct Control Health Monit 13:897–916. doi:10.1002/stc.64

    Article  Google Scholar 

  • Fadel Miguel LF, Lopez RH, and Miguel LFF (2013a) Discussion of paper: Estimating optimum parameters of tuned mass dampers using harmony search. [Eng Struct 33 (9) (2011) 2716–2723]. Eng Struct. doi:10.1016/j.engstruct.2013.03.042

  • Fadel Miguel LF, Lopez RH, Miguel LFF (2013b) Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm. Adv Eng Softw (1992) 56:23–37. doi:10.1016/j.advengsoft.2012.11.006

    Article  Google Scholar 

  • Farshi B, Assadi A (2011) Development of a chaotic nonlinear tuned mass damper for optimal vibration response. Commun Nonlinear Sci Numer Simul 16(11):4514–4523. doi:10.1016/j.cnsns.2011.02.011

    Article  MATH  Google Scholar 

  • Fateen SEK, Petriciolet AB, Rangaiah GP (2012) Evaluation of covariance matrix adaptation evolution strategy, shuffled complex evolution and firefly algorithms for phase stability, phase equilibrium and chemical equilibrium problems. Chem Eng Res Des 90:2051–2071. doi:10.1016/j.cherd.2012.04.011

    Article  Google Scholar 

  • Fister I, Yang XS, Brest J, Fister I Jr (2013a) Modified firefly algorithm using quaternion representation. Expert Syst Appl 40(18):7220–7230

    Article  Google Scholar 

  • Fister I, Fister Jr I, Yang XS, and Brest J (2013b) A comprehensive review of firefly algorithms. Swarm Evolut Comput. doi:10.1016/j.swevo.2013.06.001

  • Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using Firefly Algorithm. Comput Struct 89(23–24):2325–2336

    Article  Google Scholar 

  • Gandomi AH, Yang XS, Talataharic S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98. doi:10.1016/j.cnsns.2012.06.009

    Article  MATH  MathSciNet  Google Scholar 

  • Ghosh A, Basu B (2007) A closed-form optimal tuning criterion for TMD in damped structures. Struct Control Health Monit 14:681–692. doi:10.1002/stc.176

    Article  Google Scholar 

  • Hoang N, Fujino Y, Warnitchai P (2008) Optimal tuned mass damper for seismic applications and practical design formulas. Eng Struct 30:707–715

    Article  Google Scholar 

  • Horng MH (2012) Vector quantization using the Firefly algorithm for image compression. Expert Syst Appl 39:1078–1091

    Article  Google Scholar 

  • Horng MH, Liou RJ (2011) Multilevel minimum cross entropy threshold selection based on the Firefly algorithm. Expert Syst Appl 38:14805–14811

    Article  Google Scholar 

  • Lavan O, Daniel Y (2013) Full resources utilization seismic design of irregular structures using multiple tuned mass dampers. Struct Multidiscip Optim. doi:10.1007/s00158-013-0913-x

    Google Scholar 

  • Lee CL, Chen YT, Chung LL, Wang YP (2006) Optimal design theories and applications of tuned mass dampers. Eng Struct 28:43–53

    Article  Google Scholar 

  • Li C, Qu W (2006) Optimum properties of multiple tuned mass dampers for reduction of translational and torsional response of structures subject to ground acceleration. Eng Struct 28:472–494

    Article  Google Scholar 

  • Marano GC, Trentadue F, Greco R (2007) Stochastic optimum design criterion for linear damper devices for seismic protection of buildings. Struct Multidiscip Optimiz 33:441–455. doi:10.1007/s00158-006-0023-0

    Article  Google Scholar 

  • Marano GC, Greco R, Chiaia B (2010) A comparison between different optimization criteria for tuned mass dampers design. J Sound Vib 329:4880–4890

    Article  Google Scholar 

  • Miguel LFF (2002) Estudo Teórico e Experimental de Amortecedores de Vibração por Atrito (in Portuguese). Master dissertation, PPGEC/UFRGS, Porto Alegre, Brazil, p 156

  • Miguel LFF, Fadel Miguel LF (2012a) Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Syst Appl 39:9458–9467. doi:10.1016/j.eswa.2012.02.113

    Article  Google Scholar 

  • Miguel LFF, Fadel Miguel LF (2012b) Novel metaheuristic algorithms applied to optimization of structures. WSEAS Trans Appl Theor Mech 7:210–220

    Google Scholar 

  • Miguel LFF, Fadel Miguel LF (2013) Assessment of modern metaheuristic algorithms—HS, ABC and FA—in shape and size optimisation of structures with different types of constraints. Int J Metaheuristics 2(3):256–293

    Article  MATH  MathSciNet  Google Scholar 

  • Miguel LFF, Riera JD (2002) Sobre o uso de amortecedores por atrito. XXX Jornadas Sul-Americanas de Engenharia Estrutural, Brasília, Brazil

  • Miguel LFF, Riera JD (2008) Controle de vibrações de estruturas utilizando amortecedores por atrito. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil 8:57–69

    Google Scholar 

  • Miguel LFF, Curadelli RO, and Riera JD (2004) Uso de amortecedores por atrito e metálicos no controle de vibrações induzidas pelo vento em torre metálica. XXXI Jornadas Sul-Americanas de Engenharia Estrutural, Mendoza, Argentina

  • Miguel LFF, Riera JD, and Curadelli RO (2006) Structural vibration control by means of lead or friction external dampers. In: 4WCSCM—4th World Conference on Structural Control and Monitoring, San Diego, USA

  • Miguel LFF, Fadel Miguel LF, Lopez RH (2014) Robust design optimization of friction dampers for structural response control. Struct Control Health Monit 21:1240–1251. doi:10.1002/stc.1642

    Article  Google Scholar 

  • Min KW, Seong JY, Kim J (2010) Simple design procedure of a friction damper for reducing seismic responses of a single-story structure. Eng Struct 32:3539–3547

    Article  Google Scholar 

  • Mohebbi M, Shakeri K, Ghanbarpour Y, Majzoub H (2013) Designing optimal multiple tuned mass dampers using genetic algorithms (GAs) for mitigating the seismic response of structures. J Vib Control 19(4):605–625. doi:10.1177/1077546311434520

    Article  Google Scholar 

  • Mostaghel N, Davis T (1997) Representations of Coulomb Friction for dynamic analysis. Earthq Eng Struct Dyn 26:541–548

    Article  Google Scholar 

  • Movaffaghi H, Friberg O (2006) Optimal placement of dampers in structures using genetic algorithm. Eng Comput 23(6):597–606. doi:10.1108/02644400610680324

    Article  MATH  Google Scholar 

  • Pall AS, Marsh C (1982) Response of friction damped braced frames. J Struct Div Proc Am Soc Civil Eng ASCE 108(ST6):1313–1323

    Google Scholar 

  • Pall AS, Marsh C, Fazio P (1980) Friction joints for seismic control of large panel structures. J Prestress Concr Inst 25(6):38–61

    Google Scholar 

  • Rocha MM, Riera JD, and Miguel LFF (2004) O uso de amortecedores por atrito para a atenuação de vibrações em uma passarela metálica. XXXI Jornadas Sul-Americanas de Engenharia Estrutural, Mendoza, Argentina

  • Sayadi MK, Hafezalkotob A, and Naini SGJ (2012) Firefly-inspired algorithm for discrete optimization problems: an application to manufacturing cell formation. J Manuf Syst. doi:10.1016/j.jmsy.2012.06.004

  • Singh MP, Moreschi LM (2002) Optimal placement of dampers for passive response control. Earthq Eng Struct Dyn 31:955–976. doi:10.1002/eqe.132

    Article  Google Scholar 

  • Sonmez M, Aydin E, Karabork T (2013) Using an artificial bee colony algorithm for the optimal placement of viscous dampers in planar building frames. Struct Multidiscip Optimiz. doi:10.1007/s00158-013-0892-y

    MATH  Google Scholar 

  • Soong TT, Dargush GF (1997) Passive energy dissipation systems in structural engineering. Wiley, Chichester, NY

    Google Scholar 

  • Srivatsava PR, Mallikarjun B, Yang XS (2013) Optimal test sequence generation using firefly algorithm. Swarm Evol Comput 8:44–53. doi:10.1016/j.swevo.2012.08.003

    Article  Google Scholar 

  • Talatahari S, Gandomi AH, and Yun GJ (2012) Optimal design of tower structures using firefly algorithm. Struct Design Tall Spec Build. doi:10.1002/tal.1043

  • Tan X, Rogers RJ (1995) Equivalent viscous damping models of Coulomb Friction in multi-degree-of-freedom vibration systems. J Sound Vib 185:33–50

    Article  MATH  Google Scholar 

  • Wang JF, Lin CC, Lian CH (2009) Two-stage optimum design of tuned mass dampers with consideration of stroke. Struct Control Health Monit 16:55–72. doi:10.1002/stc.312

    Article  Google Scholar 

  • Warnitchai P, Hoang N (2006) Optimal placement and tuning of multiple tuned mass dampers for suppressing multi-mode structural response. Smart Struct Syst 2:1–24

    Article  Google Scholar 

  • Yang XS (2008) Nature-inspired metaheuristic algorithms, 1st edn. Luniver Press, UK, p 116

    Google Scholar 

  • Yang XS (2010) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, UK, p 148

    Google Scholar 

  • Yang XS, Hosseini SSS, Gandomi AH (2012) Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput 12(3):1180–1186

    Article  Google Scholar 

  • Živanović S, Pavić A, Ingólfsson ET (2010) Modeling spatially unrestricted pedestrian traffic on footbridges. J Struct Eng 136:1296–1308. doi:10.1061/ASCEST.1943-541X.0000226

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letícia Fleck Fadel Miguel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miguel, L.F.F., Fadel Miguel, L.F. & Lopez, R.H. A firefly algorithm for the design of force and placement of friction dampers for control of man-induced vibrations in footbridges. Optim Eng 16, 633–661 (2015). https://doi.org/10.1007/s11081-014-9269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-014-9269-3

Keywords

Navigation