Skip to main content

Advertisement

Log in

Genetic algorithm based optimal placement of PIR sensors for human motion localization

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

This paper studies the optimal placement of pyroelectric infrared (PIR) sensors in developing the infrared motion sensing system for human motion localization. In particular, we explore the use of genetic algorithm (GA) in optimizing both the deployment and the modulated field of view (FOV) of the PIR sensors for improving the localization performance. Two criteria, the average and maximum localization errors, are used to evaluate the localization performance. In addition, the numerical analysis is presented to offer a guidance on the searching spaces of the design parameters in implementing GA optimization. The proposed GA-based design approach is validated by means of both simulation and experimental studies in the context of human-following mobile robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beal J, Shukla A, Brezhneva O, Abramson M (2008) Optimal sensor placement for enhancing sensitivity to change in stiffness for structural health monitoring. Optim Eng 9(2):119–142

    Article  MathSciNet  MATH  Google Scholar 

  • Bishop A, Fidan B, Anderson B, Dogancay K, Pathirana P (2008) Optimal range-difference-based localization considering geometrical constraints. IEEE J Ocean Eng 33(3):289–301

    Article  Google Scholar 

  • Bishop A, Anderson B, Fidan B, Pathirana P, Mao G (2009) Bearing-only localization using geometrically constrained optimization. IEEE Trans Aerosp Electron Syst 45(1):308–320

    Article  Google Scholar 

  • Bishop A, Fidan B, Anderson B, Dogancay K, Pathirana P (2010) Optimality analysis of sensor-target localization geometries. Automatica 46(3):479–492

    Article  MathSciNet  MATH  Google Scholar 

  • Bodor R, Drenner A, Schrater P, Papanikolopoulos N (2007) Optimal camera placement for automated surveillance tasks. J Intell Robot Syst 50(3):257–295

    Article  Google Scholar 

  • Boginski V, Commander C, Pardalos P, Ye Y (2011) Sensors: theory, algorithms, and applications. Springer, Berlin

    Google Scholar 

  • Brady D, Pitsianis N, Sun X (2004) Reference structure tomography. J Opt Soc Am A 21(7):1140–1147

    Article  Google Scholar 

  • Bulusu N, Heidemann J, Estrin D (2000) GPS-less low-cost outdoor localization for very small devices. IEEE Pers Commun 7(5):28–34

    Article  Google Scholar 

  • Carr P, Thomas P, Hornsey R (2005) Performance benefits and limitations of a camera network. In: Proceedings of SPIE, pp 328–339

    Google Scholar 

  • Chen S, Li Y (2004) Automatic sensor placement for model-based robot vision. IEEE Trans Syst Man Cybern, Part B, Cybern 34(1):393–408

    Article  Google Scholar 

  • Chen X, Davis J (2008) An occlusion metric for selecting robust camera configurations. Mach Vis Appl 19(4):217–222

    Article  MathSciNet  Google Scholar 

  • Chen X, Hanrahan P (2002) Design of many-camera tracking systems for scalability and efficient resource allocation. Dissertation, Stanford University

  • Chen Y, Chuah C, Zhao Q (2005) Sensor placement for maximizing lifetime per unit cost in wireless sensor networks. In: IEEE Military communications conference, pp 1097–1102

    Google Scholar 

  • Cheng X, Du D, Wang L, Xu B (2008) Relay sensor placement in wireless sensor networks. Wirel Netw 14(3):347–355

    Article  Google Scholar 

  • Cuffin B, Schomer D, Ives J, Blume H (2001) Experimental tests of EEG source localization accuracy in spherical head models. Clin Neurophysiol 112(1):46–51

    Article  Google Scholar 

  • Ercan A, Yang D, Gamal A, Guibas L (2006) Optimal placement and selection of camera network nodes for target localization. In: Gibbons P, Abdelzaher T, Aspnes J, Rao R (eds) Distributed computing in sensor systems, pp 389–404

    Chapter  Google Scholar 

  • Erdem U, Sclaroff S (2004) Optimal placement of cameras in floorplans to satisfy task requirements and cost constraints. In: OMNIVIS workshop, pp 1–12

    Google Scholar 

  • Fang J, Hao Q, Brady D, Shankar M, Guenther B, Pitsianis N, Hsu K (2006) Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays. Opt Express 14(2):609–624

    Article  Google Scholar 

  • Feng G, Liu M, Guo X, Zhang J, Wang G (2011) Genetic algorithm based optimal placement of PIR sensor arrays for human localization. In: IEEE international conference on mechatronics and automation, pp 1080–1084

    Google Scholar 

  • Feng G, Guo X, Wang G (2012) Infrared motion sensing system for human-following robots. Sens Actuators A, Phys. doi:10.1016/j.sna.2012.06.023

    Google Scholar 

  • Hao Q, Brady D, Guenther B, Burchett J, Shankar M, Feller S (2006) Human tracking with wireless distributed pyroelectric sensors. IEEE Sens J 6(6):1683–1696

    Article  Google Scholar 

  • Horster E, Lienhart R (2006) On the optimal placement of multiple visual sensors. In: Proceedings of the 4th ACM international workshop on video surveillance and sensor networks, pp 111–120

    Chapter  Google Scholar 

  • Houck C, Joines J, Kay M (1995) A genetic algorithm for function optimization: a Matlab implementation. NCSU-IE TR 95(09)

  • Lee S, Ha K, Lee K (2006) A pyroelectric infrared sensor-based indoor location-aware system for the smart home. IEEE Trans Consum Electron 52(4):1311–1317

    Article  Google Scholar 

  • Liu T, Guo X, Wang G (2012) Elderly-falling detection using distributed direction-sensitive pyroelectric infrared sensor arrays. Multidimens Syst Signal Process 23(4):451–467

    Article  MathSciNet  MATH  Google Scholar 

  • Olague G, Mohr R (2002) Optimal camera placement for accurate reconstruction. Pattern Recognit 35(4):927–944

    Article  MATH  Google Scholar 

  • Shankar M, Burchett J, Hao Q, Guenther B, Brady D et al. (2006) Human-tracking systems using pyroelectric infrared detectors. Opt Eng 45:106,401

    Article  Google Scholar 

  • Shen X, Wang Z, Jiang P, Lin R, Sun Y (2005) Connectivity and RSSI based localization scheme for wireless sensor networks. In: Advances in intelligent computing, pp 578–587

    Chapter  Google Scholar 

  • Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  • Zhang J, Chung H, Lo W, Hui S, Wu A (2001) Implementation of a decoupled optimization technique for design of switching regulators using genetic algorithms. IEEE Trans Power Electron 16(6):752–763

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Nature Science Foundation under Grant 60775055 and 61074167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoli Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, G., Liu, M. & Wang, G. Genetic algorithm based optimal placement of PIR sensors for human motion localization. Optim Eng 15, 643–656 (2014). https://doi.org/10.1007/s11081-012-9209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-012-9209-z

Keywords

Navigation