Skip to main content
Log in

Finding multiple optimal solutions of signomial discrete programming problems with free variables

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

With the increasing reliance on mathematical programming based approaches in various fields, signomial discrete programming (SDP) problems occur frequently in real applications. Since free variables are often introduced to model problems and alternative optima are practical for decision making among multiple strategies, this paper proposes a generalized method to find multiple optimal solutions of SDP problems with free variables. By means of variable substitution and convexification strategies, an SDP problem with free variables is first converted into another convex mixed-integer nonlinear programming problem solvable to obtain an exactly global optimum. Then a general cut is utilized to exclude the previous solution and an algorithm is developed to locate all alternative optimal solutions. Finally, several illustrative examples are presented to demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora JS (1989) Introduction to optimum design. McGraw-Hill, New York

    Google Scholar 

  • Athier G, Floquet P, Pibouleau L, Domenech S (1997) Synthesis of heat exchanger network by simulated annealing and NLP procedures. AIChE J 43:3007–3019

    Article  Google Scholar 

  • Balas E, Jeroslow R (1972) Canonical cuts on the unit hypercube. SIAM J Appl Math 23(1):61–69

    Article  MATH  MathSciNet  Google Scholar 

  • Biegler LT, Grossmann IE (2004) Retrospective on optimization. Comput Chem Eng 28(8):1169–1192

    Google Scholar 

  • Borchers B, Mitchell JE (1994) An improved branch and bound algorithm for mixed integer nonlinear programs. Comput Oper Res 21:359–367

    Article  MATH  MathSciNet  Google Scholar 

  • Chelouah R, Siarry P (2000) Tabu search applied to global optimization. Eur J Oper Res 123:256–270

    Article  MATH  MathSciNet  Google Scholar 

  • Chen CS, Sarin S, Ram B (1993) A mixed-integer programming model for a class of assortment problems. Eur J Oper Res 63:362–367

    Article  Google Scholar 

  • Dolan WB, Cummings PT, Levan MD (1989) Process optimization via simulated annealing: application to network design. AIChE J 35:725–736

    Article  Google Scholar 

  • Duran M, Grossmann IE (1986) An outer-approximation algorithm for a class of mixed integer nonlinear programs. Math Program 36:307–339

    Article  MATH  MathSciNet  Google Scholar 

  • Fletcher R, Leyffer S (1994) Solving mixed integer nonlinear programs by outer approximation. Math Program 66:327–349

    Article  MATH  MathSciNet  Google Scholar 

  • Floudas CA (1995) Nonlinear and mixed integer optimization: fundamentals and applications. Oxford University Press, New York

    MATH  Google Scholar 

  • Floudas CA (1999a) Global optimization in design and control of chemical process systems. J Process Control 10:125–134

    Article  Google Scholar 

  • Floudas CA (1999b) Recent advances in global optimization for process synthesis, design and control: Enclosure of all solutions. Comput Chem Eng 23:S963–S973

    Article  Google Scholar 

  • Floudas CA (2000) Deterministic global optimization: theory, methods and application. Kluwer Academic, Boston

    Google Scholar 

  • Floudas CA, Akrotirianakis IG, Caratzoulas S, Meyer CA, Kallrath J (2005) Global optimization in the 21st century: advances and challenges. Comput Chem Eng 29:1185–1202

    Article  Google Scholar 

  • Floudas CA, Gounaris CE (2009) A review of recent advances in global optimization. J Glob Optim 45(1):3–38

    Article  MATH  MathSciNet  Google Scholar 

  • Floudas CA, Pardalos PM (1996) State of the art in global optimization: computational methods and applications. Kluwer Academic, Boston

    MATH  Google Scholar 

  • Floudas CA, Pardalos PM, Adjiman CS, Esposito WR, Gumus Z, Harding ST, Klepeis JL, Meyer CA, Schweiger CA (1999) Handbook of test problems for local and global optimization. Kluwer Academic, Dordrecht

    Google Scholar 

  • Geoffrion AM (1972) Generalized Benders decomposition. J Optim Theory Appl 10:237–260

    Article  MATH  MathSciNet  Google Scholar 

  • GroßB, Hammel U, Maldaner P, Meyer A, Roosen P, Schütz M (1996) Optimization of heat exchanger networks by means of evolution strategies. Lect Notes Comput Sci 1141:1002–1011

    Article  Google Scholar 

  • Grossmann IE (2002) Review of nonlinear mixed-integer and disjunctive programming techniques. Optim Eng 3:227–252

    Article  MATH  MathSciNet  Google Scholar 

  • Grossmann IE, Biegler LT (2004) Part II. Future perspective on optimization. Comput Chem Eng 28(8):1193–1218

    Google Scholar 

  • Lee S, Grossmann IE (2000) New algorithms for nonlinear generalized disjunctive programming. Comput Chem Eng 24:2125–2142

    Article  Google Scholar 

  • Lejeune MA (2003) Heuristic optimization of experimental designs. Eur J Oper Res 147:484–498

    Article  MATH  MathSciNet  Google Scholar 

  • Lewin R (1998) A generalized method for HEN synthesis using stochastic optimization. II. Synthesis of cost-optimal networks. Comput Chem Eng 22:1387–1405

    Article  Google Scholar 

  • Leyffer S (2001) Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Comput Optim Appl 18:295–309

    Article  MATH  MathSciNet  Google Scholar 

  • Lin B, Miller DC (2004) Solving heat exchanger network synthesis problems with tabu search. Comput Chem Eng 28:1451–1464

    Google Scholar 

  • Lindo (2004) LINGO, Release 11. Lindo System Inc., Chicago

    Google Scholar 

  • Lundell A, Westerlund T (2009) Convex underestimation strategies for signomial functions. Optim Methods Softw 24(4–5):505–522

    Article  MATH  MathSciNet  Google Scholar 

  • Lundell A, Westerlund J, Westerlund T (2009) Some transformation techniques with applications in global optimization. J Glob Optim 43(2–3):391–405

    Article  MATH  MathSciNet  Google Scholar 

  • Luo Y, Yuan X, Liu Y (2007) An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Comput Chem Eng 31:153–162

    Article  Google Scholar 

  • Maranas CD, Floudas CA (1995) Finding all solutions of nonlinearly constrained systems of equations. J Glob Optim 7:143–182

    Article  MATH  MathSciNet  Google Scholar 

  • Maranas CD, Floudas CA (1997) Global optimization in generalized geometric programming. Comput Chem Eng 21:351–370

    Article  MathSciNet  Google Scholar 

  • Pedamallu CS, Ozdamar L (2008) Investigating a hybrid simulated annealing and local search algorithm for constrained optimization. Eur J Oper Res 185:1230–1245

    Article  MATH  MathSciNet  Google Scholar 

  • Pörn R, Harjunkoski I, Westerlund T (1999) Convexification of different classes of non-convex MINLP problems. Comput Chem Eng 23:439–448

    Article  Google Scholar 

  • Quesada I, Grossmann IE (1992) An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput Chem Eng 16:937–947

    Article  Google Scholar 

  • Salcedo RL (1992) Solving nonconvex nonlinear programming problems with adaptive random search. Ind Eng Chem Res 31:262–273

    Article  Google Scholar 

  • Shopova EG, Vaklieva-Bancheva NG (2006) BASIC—a genetic algorithm for engineering problems solution. Comput Chem Eng 30:1293–1309

    Article  Google Scholar 

  • Stubbs RA, Mehrotra S (1999) A branch-and-cut method for 0-1 mixed convex programming. Math Program 86:515–532

    Article  MATH  MathSciNet  Google Scholar 

  • Tawarmalani M, Sahinidis NV (2002) Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  • Tsai JF (2005) Global optimization for nonlinear fractional programming problems in engineering design. Eng Optim 37:399–409

    Article  MathSciNet  Google Scholar 

  • Tsai JF, Li HL, Hu NZ (2002) Global optimization for signomial discrete programming problems in engineering design. Eng Optim 34:613–622

    Article  Google Scholar 

  • Tsai JF, Lin MH (2006) An optimization approach for solving signomial discrete programming problems with free variables. Comput Chem Eng 30:1256–1263

    Article  Google Scholar 

  • Tsai JF, Lin MH (2008) Global optimization of signomial mixed-integer nonlinear programming problems with free variables. J Glob Optim 42:39–49

    Article  MATH  MathSciNet  Google Scholar 

  • Tsai JF, Lin MH, Hu YC (2008) Finding multiple solutions to general integer linear programs. Eur J Oper Res 184:802–809

    Article  MATH  MathSciNet  Google Scholar 

  • Westerlund T (2007) Some transformation techniques in global optimization. In: Liberti L, Maculan N (eds) Global optimization: from theory to implementation. Springer, New York, pp 45–74

    Google Scholar 

  • Westerlund T, Pettersson F (1995) An extended cutting plane method for solving convex MINLP problems. Comput Chem Eng 19:S131–S136

    Article  Google Scholar 

  • Young CT, Zheng Y, Yeh CW, Jang SS (2007) Information-guided genetic algorithm approach to the solution of MINLP problems. Ind Eng Chem Res 46(5):1527–1537

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Fa Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, MH., Tsai, JF. Finding multiple optimal solutions of signomial discrete programming problems with free variables. Optim Eng 12, 425–443 (2011). https://doi.org/10.1007/s11081-011-9137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-011-9137-3

Keywords

Navigation