Skip to main content

Advertisement

Log in

Combustion engine optimization: a multiobjective approach

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

To simulate the physical and chemical processes inside combustion engines is possible by appropriate software and high performance computers. For combustion engines a good design is such that it combines a low fuel consumption with low emissions of soot and nitrogen oxides. These are however partly conflicting requirements. In this paper we approach this problem in a multi-criteria setting which has the advantage that it is possible to estimate the trade off between the different objectives and the decision of the optimal solution is postponed until all possibilities and limitations are known. The optimization algorithm is based on surrogate models and is here applied to optimize the design of a diesel combustion engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beyer W, Liebscher M, Beer M, Graf W (2006) Neural network based response surface methods—a comparative study. In: Proceedings of the 5th German LS-DYNA Forum 2006. DYNAmore GmbH, Ulm

  • Buhmann MD (2000) Radial basis functions. Acta Numer, vol 9. Cambridge Univ Press, Cambridge, pp 1–38

    Google Scholar 

  • Buhmann MD (2003) Radial basis functions. Cambridge monographs on applied and computational mathematics, vol 12. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • CD-adapco (2005) User guide, star-cd version 3.26

  • Chui CK (1988) Multivariate splines. CBMS-NSF regional conference series in applied mathematics, vol 54. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. With an appendix by Harvey Diamond

    Google Scholar 

  • Deb K (1999) An introduction to genetic algorithms. Chance as necessity. Sādhanā 24(4–5):293–315.

    MATH  MathSciNet  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley-interscience series in systems and optimization. Wiley, New York. With a foreword by David E Goldberg

    MATH  Google Scholar 

  • Deb K, Goel T (2002) Multi-objective evolutionary algorithms for engineering shape design. Evolutionary optimization, Internat Ser Oper Res Management Sci, vol 48. Kluwer Academic, Boston, pp 147–175

    Google Scholar 

  • Deb K, Tiwari S (2008) Omni-optimizer: a generic evolutionary algorithm for single and multi-objective optimization. Eur J Oper Res 185(3):1062–1087

    Article  MATH  MathSciNet  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  • Deb K, Sundar J, Udaya B, Rao N, Chaudhuri S (2006) Reference point based multi-objective optimization using evolutionary algorithms. Int J Comput Intell Res 2(3):273–286

    MathSciNet  Google Scholar 

  • Goel T, Vaidyanathan R, Haftka RT, Shyy W, Queipo NV, Tucker K (2007) Response surface approximation of Pareto optimal front in multi-objective optimization. Comput Meth Appl Mech Eng 196(4–6):879–893

    Article  MATH  Google Scholar 

  • Hamacher HW, Küfer K-H (2002) Inverse radiation therapy planning—a multiple objective optimization approach. Discrete Appl Math 118(1–2):141–161

    Google Scholar 

  • Hjorth JSU (1994) Computer intensive statistical methods. Chapman & Hall, London. Validation model selection and bootstrap

    MATH  Google Scholar 

  • Holmström K (1999) The TOMLAB optimization environment in MATLAB. Adv Model Optim 1:47

    MATH  Google Scholar 

  • Huh KY, Gosman AD (1991) A phenomenological model of diesel spray atomization. In: Proc of the international conference on multiphase flows (Sep 1991)

  • Jakobsson S, Patriksson M, Rudholm J, Wojciechowski A (2009) A method for simulation based optimization using radial basis functions. Optim Eng. doi:10.1007/s11081-009-9087-1

  • Jones DR (2001) A taxonomy of global optimization methods based on response surfaces. J Glob Optim 21(4):345–383

    Article  MATH  Google Scholar 

  • Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79(1):157–181

    Article  MATH  MathSciNet  Google Scholar 

  • Karlsson A, Magnusson I, Balthasar M, Mauss F (1998) Simulation of soot formation under diesel engine conditions using a detailed kinetic soot model. J Eng, SAE-Trans 981022

  • Magnussen BF, Hjertager BH (1976) On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. Proc Combust Inst 16:719–729

    Google Scholar 

  • Miettinen K (1999) Nonlinear multiobjective optimization. International series in operations research & management science. Kluwer Academic, Boston

    MATH  Google Scholar 

  • Miettinen K (2001) Some methods for nonlinear multi-objective optimization. In: Evolutionary multi-criterion optimization (Zurich, 2001). Lecture notes in comput sci. Springer, Berlin, pp 1–20

    Chapter  Google Scholar 

  • Pedram T, Fakhraie SM, Pedram A, Jamali MR, Lucas C (2006) Local linear model tree (lolimot) reconfigurable parallel hardware. In: Proceedings of World Academy of Science, Engineering and Technology, vol 13, May 2006, pp 96–101

  • Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Kevin T (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41(1):1–28

    Article  Google Scholar 

  • Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–435. With comments and a rejoinder by the authors

    Article  MATH  MathSciNet  Google Scholar 

  • Thieke C, Küfer K-H, Monz M, Scherrer A, Alonso F, Oelfke U, Huber PE, Debus J, Bortfeld T (2007) A new concept for interactive radiotherapy planning with multicriteria optimization: First clinical evaluation. Radiother Oncol 85(2):292–298

    Article  Google Scholar 

  • Wendland H (2005) Scattered data approximation. Cambridge monographs on applied and computational mathematics, vol 17. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Jakobsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobsson, S., Saif-Ul-Hasnain, M., Rundqvist, R. et al. Combustion engine optimization: a multiobjective approach. Optim Eng 11, 533–554 (2010). https://doi.org/10.1007/s11081-009-9090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-009-9090-6

Keywords

Navigation