Skip to main content
Log in

Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We present a technique for the rapid and reliable optimization of systems characterized by linear-functional outputs of coercive elliptic partial differential equations with affine (input) parameter dependence. The critical ingredients are: reduced-basis approximation to effect significant reduction in state-space dimensionality; a posteriori error bounds to provide rigorous error estimation and control; “offline/online” computational decompositions to permit rapid evaluation of output bounds, output bound gradients, and output bound Hessians in the limit of many queries; and reformulation of the approximate optimization statement to ensure (true) feasibility and control of suboptimality. To illustrate the method we consider the design of a three-dimensional thermal fin: Given volume and power objective-function weights, and root temperature “not-to-exceed” limits, the optimal geometry and heat transfer coefficient can be determined—with guaranteed feasibility—in only 2.3 seconds on a 500 MHz Pentium machine; note the latter includes only the online component of the calculations. Our method permits not only interactive optimal design at conception and manufacturing, but also real-time reliable adaptive optimal design in operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov N, Dennis JE Jr (1995) Multilevel algorithms for nonlinear optimization. In: Optimal design and control (Blacksburg, VA, 1994). Progr. systems control theory, vol 19. Birkhäuser Boston, Boston, pp 1–22

    Google Scholar 

  • Alexandrov N, Hussaini MY (1997) Multidisciplinary design optimization: state-of-the-art. SIAM, Philadelphia

    Google Scholar 

  • Almroth BO, Stern P, Brogan FA (1978) Automatic choice of global shape functions in structural analysis. AIAA J 16:525–528

    Google Scholar 

  • Barrault M, Nguyen NC, Maday Y, Patera AT (2004) An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C R Acad Sci Paris Sér I 339:667–672

    MATH  MathSciNet  Google Scholar 

  • Barrett A, Reddien G (1995) On the reduced basis method. Z Angew Math Mech 75(7):543–549

    MATH  MathSciNet  Google Scholar 

  • Biros G, Ghattas O (2000) A Lagrange–Newton–Krylov–Schur method for PDE-constrained optimization. SIAG/OPT Views News 11(1)

  • Byrd RH, Hribar ME, Nocedal J (1999) An interior point algorithm for large scale nonlinear programming. SIAM J Optim 9(4):877–900

    Article  MATH  MathSciNet  Google Scholar 

  • Cliff EM, Heinkenschloss M, Shenoy AR (1998) Adjoint-based methods in aerodynamic design-optimization. In: Computational methods for optimal design and control (Arlington, VA, 1997). Progr. systems control theory, vol 24. Birkhäuser Boston, Boston, pp 91–112

    Google Scholar 

  • Coleman TF, Li Y (1990) Large scale numerical optimization. SIAM, Philadelphia

    MATH  Google Scholar 

  • Dennis JE, Torczon V (1997) Managing approximation models in optimization. In: Multidisciplinary design optimization (Hampton, VA, 1995). SIAM, Philadelphia, pp 330–347

    Google Scholar 

  • Fink JP, Rheinboldt WC (1983) On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z Angew Math Mech 63:21–28

    MATH  MathSciNet  Google Scholar 

  • Forsgren A, Gill PE (1998) Primal-dual interior methods for nonconvex nonlinear programming. SIAM J Optim 8(4):1132–1152

    Article  MATH  MathSciNet  Google Scholar 

  • Forsgren A, Gill P, Wright M (2002) Interior methods for nonlinear optimization. SIAM Rev 44(4):535–597

    Article  MathSciNet  Google Scholar 

  • Fox R, Miura H (1971) An approximate analysis technique for design calculations. AIAA J 9(1):177–179

    Article  Google Scholar 

  • Ghattas O, Orozco CE (1997) A parallel reduced Hessian SQP method for shape optimization. In: Multidisciplinary design optimization (Hampton, VA, 1995). SIAM, Philadelphia, pp 133–152

    Google Scholar 

  • Gill PE, Murray W, Saunders MA (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006

    Article  MATH  MathSciNet  Google Scholar 

  • Gould NIM (2003) Some reflections on the current state of active-set and interior-point methods for constrained optimization. SIAG/OPT Views News 14(1)

  • Haftka R, Gürdal Z, Kamat M (1990) Elements of structural optimization. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  • Hager WW, Hearn DW, Pardalos PM (1994) Large scale optimization: state of the art. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  • Ito K, Ravindran SS (1998) A reduced-order method for simulation and control of fluid flows. J Comput Phys 143(2):403–425

    Article  MATH  MathSciNet  Google Scholar 

  • Lewis RM (1998) Numerical computation of sensitivities and the adjoint approach. In: Computational methods for optimal design and control (Arlington, VA, 1997). Progr. systems control theory, vol 24. Birkhäuser Boston, Boston, pp 285–302

    Google Scholar 

  • Machiels L, Maday Y, Oliveira IB, Patera AT, Rovas DV (2000) Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C R Acad Sci Paris Sér I 331(2):153–158

    MATH  MathSciNet  Google Scholar 

  • Maday Y, Machiels L, Patera AT, Rovas DV (2000) Blackbox reduced-basis output bound methods for shape optimization. In: Proceedings 12th international domain decomposition conference. Chiba, pp 429–436

  • Maday Y, Patera AT, Turinici G (2002) A priori convergence theory for reduced–basis approximations of single-parameter elliptic partial differential equations. J Sci Comput 17(1–4):437–446

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen NC, Veroy K, Patera AT (2005) Certified real-time solution of parametrized partial differential equations. In: Yip S (ed) Handbook of materials modeling. Springer, Berlin, pp 1523–1558

    Google Scholar 

  • Noor AK, Peters JM (1980) Reduced basis technique for nonlinear analysis of structures. AIAA J 18(4):455–462

    Google Scholar 

  • Oliveira IB (2007) An affine, directionally-scaled trust region SQP-IPM algorithm (in preparation)

  • Patera AT, Rovas D, Machiels L (2000) Reduced–basis output–bound methods for elliptic partial differential equations. SIAG/OPT Views News 11(1)

  • Porsching TA (1985) Estimation of the error in the reduced basis method solution of nonlinear equations. Math Comput 45(172):487–496

    Article  MATH  MathSciNet  Google Scholar 

  • Prud’homme C, Rovas D, Veroy K, Maday Y, Patera AT, Turinici G (2002a) Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J Fluids Eng 124(1):70–80

    Article  Google Scholar 

  • Prud’homme C, Rovas DV, Veroy K, Patera AT (2002b) A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. M2AN (Math Model Numer Anal) 36(5):747–771

    Article  MATH  MathSciNet  Google Scholar 

  • Ravindran SS (1998) Numerical approximation of optimal flow control problems by SQP method. In: Optimal control of viscous flow. SIAM, Philadelphia, pp 181–198

    Google Scholar 

  • Veroy K, Patera AT (2005) Certified real-time solution of the parametrized steady incompressible Navier–Stokes equations; Rigorous reduced-basis a posteriori error bounds. Int J Numer Meth Fluids 47:773–788

    Article  MATH  MathSciNet  Google Scholar 

  • Veroy K, Rovas D, Patera AT (2002) A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: “convex inverse” bound conditioners. Control Optim Calc Var 8:1007–1028. Special Volume: A tribute to J.-L. Lions

    Article  MATH  MathSciNet  Google Scholar 

  • Veroy K, Prud’homme C, Rovas DV, Patera AT (2003) A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations (AIAA Paper 2003-3847). In: Proceedings of the 16th AIAA computational fluid dynamics conference

  • Waanders B, Bartlett R, Long K, Boggs P, Salinger A (2002) Large scale non-linear programming for PDE constrained optimization. Technical report SAND2002-3198, Sandia National Labs

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Patera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, I.B., Patera, A.T. Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations. Optim Eng 8, 43–65 (2007). https://doi.org/10.1007/s11081-007-9002-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-007-9002-6

Keywords

Navigation