Skip to main content
Log in

Computing in Finite Time

  • Published:
Open Systems & Information Dynamics

Abstract

If a message can have n different values and all values are equally probable, then the entropy of the message is log(n). In the present paper, we discuss the expectation value of the entropy, for an arbitrary probability distribution. We introduce a mixture of all possible probability distributions. We assume that the mixing function is uniform

  • either in flat probability space, i.e. the unitary n-dimensional hypertriangle

  • or in Bhattacharyya’s spherical statistical space, i.e. the unitary n-dimensional hyperoctant.

A computation is a manipulation of an incoming message, i.e. a mapping in probability space:

  • either a reversible mapping, i.e. a symmetry operation (rotation or reflection) in n-dimen sional space

  • or an irreversible mapping, i.e. a projection operation from n-dimensional to lower-dimensional space.

During a reversible computation, no isentropic path in the probability space can be found. Therefore we have to conclude that a computation cannot be represented by a message which merely follows a path in n-dimensional probability space. Rather, the point representing the mixing function travels along a path in an infinite-dimensional Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bhattacharyya, On a measure of divergence between two statistical populations defined by their probability distributions, Bulletin of the Calcutta Mathematical Society 35, 99 (1943).

    MATH  MathSciNet  Google Scholar 

  2. C. Atkinson and A. Mitchell, Rao’s distance, Sankhyā, The Indian Journal of Statistics 43, 345 (1981).

    MathSciNet  MATH  Google Scholar 

  3. W. Wootters, Statistical distance and Hilbert space, Physical Review D 23, 357 (1981).

    MathSciNet  ADS  Google Scholar 

  4. F. Aherne, N. Thacker, and P. Rockett, The Bhattacharyya metric as an absolute similarity measure for frequency coded data, Kybernetika 32, 363 (1998).

    MathSciNet  Google Scholar 

  5. L. Diósi and P. Salamon, From statistical distances to minimally dissipative processes, in: Thermodynamics of energy conversion and transport, S. Sieniutycz and A. De Vos, eds., Springer Verlag, New York, 2000, pp. 286–318.

    Google Scholar 

  6. D. Sommerville, An introduction to the geometry in n dimensions, Dover Publications, New York, 1958.

    Google Scholar 

  7. M. Kendall, A course in the geometry of n dimensions, Charles Griffin & co, London, 1961.

    MATH  Google Scholar 

  8. J. Avery, Hyperspherical harmonics — applications in quantum theory, Kluwer Academic Publishers, Dordrecht, 1989.

    MATH  Google Scholar 

  9. H. Teicher, On the mixture of distributions, The Annals of Mathematical Statistics 31, 55 (1960).

    MATH  MathSciNet  Google Scholar 

  10. B. Everitt and D. Hand, Finite mixture distributions, Chapman and Hall, London, 1981.

    MATH  Google Scholar 

  11. A. De Vos, The expectation value of the entropy of a digital message, Open Sys. Information Dyn. 9, 97 (2002).

    Article  MATH  Google Scholar 

  12. A. De Vos, The entropy of a mixture of probability distributions, Entropy 7, 15 (2005).

    MATH  MathSciNet  ADS  Google Scholar 

  13. K. Jones, Entropy of random quantum states, J. Phys. A: General and Mathematical 23, L1247 (1990).

    Article  ADS  Google Scholar 

  14. W. Wootters, Random quantum states, Foundations of Physics 20, 1365 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  15. B. Andresen, Finite-time Thermodynamics, Københavns Universitet, København, 1983.

    Google Scholar 

  16. B. Andresen, Thermodynamics in finite time, Physics Today 37, September 1984, pp. 2–10.

    Article  Google Scholar 

  17. S. Sieniutycz and P. Salamon, Finite-Time Thermodynamics and Thermoeconomics, Taylor & Francis, New York, 1990.

    Google Scholar 

  18. C. Wu, W. Chen, and J. Chen, Recent Advances in Finite-Time Thermodynamics, Nova Science, Commack, 1999.

    Google Scholar 

  19. R. Berry, V. Kazakov, S. Sieniutycz, Z. Szwast, and A. Tsirlin, Thermodynamic Optimization of Finite-Time Processes, Wiley, Chichester, 2000.

    Google Scholar 

  20. A. De Vos, Reversible computing, Progress in Quantum Electronics 23, 1 (1999).

    Article  ADS  Google Scholar 

  21. A. De Vos, Fundamental limits of power dissipation in digital electronics, Proceedings of the 6 th International Conference on Mixed Design of Integrated Circuits and Systems, Kraklów, 17–19 June 1999, pp. 27–36.

  22. A. De Vos, Lossless computing, Proceedings of the I.E.E.E. Workshop on Signal Processing, Poznaln, 10 October 2003, pp. 7–14.

  23. R. Landauer, Irreversibility and heat generation in the computing process, I.B.M. Journal of Research and Development 5, 183 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Bennett and R. Landauer, The fundamental physical limits of computation, Scientific American 253, July 1985, pp. 38–46.

    ADS  Google Scholar 

  25. R. Landauer, Information is physical, Physics Today 44, May 1991, pp. 23–29.

    Google Scholar 

  26. B. Andresen, R. Berry, A. Nitzan, and P. Salamon, Thermodynamics in finite time — I. The step-Carnot cycle, Physical Review A 15, 2086 (1977).

    ADS  Google Scholar 

  27. J. Nulton, P. Salamon, B. Andresen, and Q. Anmin, Quasistatic processes as step equilibrations, J. Chem. Phys. 83, 334 (1985).

    Article  ADS  Google Scholar 

  28. B. Andresen and P. Salamon, Distillation by thermodynamic geometry, in: Thermodynamics of energy conversion and transport, S. Sieniutycz and A. De Vos, eds., Springer Verlag, New York, 2000, pp. 319–331.

    Google Scholar 

  29. H. Ries and W. Spirkl: Optimal finite-time endoreversible processes — general theory and applications, in: Variational and extremum principles in macroscopic systems, S. Sieniutycz and H. Farkas, eds., Elsevier, Amsterdam, 2005, pp. 627–639.

    Google Scholar 

  30. M. Lemanska and Z. Jaeger, A nonlinear model for relaxation in exited closed physical systems, Physica D 170, 72 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. G. Beretta, A nonlinear model dynamics for closed-system, constrained, maximal-entropygeneration relaxation by energy redistribution, arXiv:quant-ph/0501178 v1 (2005), in press at Physical Review E.

  32. H. Callen, Thermodynamics, Wiley, New York, 1960, p. 202.

    MATH  Google Scholar 

  33. D. Tondeur and E. Kvaalen, Equipartition of entropy production. An optimality criterion for transfer and separation processes, Industrial & Engineering Chemistry Research 26, 50 (1987).

    Article  Google Scholar 

  34. D. Tondeur, Equipartition of entropy production: a design and optimization criterion in chemical engineering, in: Finite-time thermodynamics and thermoeconomics, S. Sieniutycz and P. Salomon, eds., Taylor & Francis, New York, 1990, pp. 175–208.

    Google Scholar 

  35. E. Sauar, S. Kjelstrup Ratkje, and K. Lien, Equipartition of forces: a new principle for process design and optimization, Industrial & Engineering Chemistry Research 35 (1996), pp. 4147–4153.

    Article  Google Scholar 

  36. A. De Vos and B. Desoete, Equipartition principles in finite-time thermodynamics, Journal of Non-Equilibrium Thermodynamics 25, 1 (2000).

    Article  MATH  ADS  Google Scholar 

  37. W. Ebeling, On the relation between various entropy concepts and the valoric interpretation, Physica A 182, 108 (1992).

    Article  ADS  Google Scholar 

  38. W. Ebeling, Entropy and information in processes of self-organization, uncertainty and predictability, Physica A 194, 563 (1993).

    Article  ADS  Google Scholar 

  39. V. Buyarov, P. López-Artés, A. Martínez-Finkelshtein, and W. Van Assche, Information entropy of Gegenbauer polynomials, J. Phys. A: Mathematical and General 33, 6549 (2000).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In honour of prof. dr. Henrik Farkas (Department of Chemical Physics, Technical University of Budapest) an outstanding scientist and most remarkable human being who unfortunately left us on 21 July 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Vos, A. Computing in Finite Time. Open Syst Inf Dyn 13, 179–195 (2006). https://doi.org/10.1007/s11080-006-8221-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11080-006-8221-1

Keywords

Navigation