Skip to main content
Log in

A cubic regularization of Newton’s method with finite difference Hessian approximations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present a version of the cubic regularization of Newton’s method for unconstrained nonconvex optimization, in which the Hessian matrices are approximated by forward finite difference Hessians. The regularization parameter of the cubic models and the accuracy of the Hessian approximations are jointly adjusted using a nonmonotone line search criterion. Assuming that the Hessian of the objective function is globally Lipschitz continuous, we show that the proposed method needs at most \(\mathcal {O}\left (n\epsilon ^{-3/2}\right )\) function and gradient evaluations to generate an 𝜖-approximate stationary point, where n is the dimension of the domain of the objective function. Preliminary numerical results corroborate our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Throughout this paper, by call of the oracle we mean one function evaluation or one gradient evaluation.

  2. The numerical experiments reported in [1] show that in certain variants of CNM with inexact Hessians, the difference between ∥xt+ 1xt∥ and ∥xtxt− 1∥ may reach different orders of magnitude. Thus, in practice, inequalities (1) and (2) induce very different error bounds.

  3. The choice of performing 10 iterations was done based on a few preliminary numerical tests. Running the method in [8] with this number of iterations often provided a very good initial point for the BFGS method.

  4. This dataset is freely available in the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml).

References

  1. Bellavia, S., Gurioli, G., Morini, B.: Adaptive cubic regularization methods with dynamic inexact Hessian information and applications to finite-sum minimization. IMA J. Numer. Anal. 41, 764–799 (2021)

    Article  MathSciNet  Google Scholar 

  2. Bergou, E., Diouane, Y., Gratton, S.: A line-search algorithm inspired by the adaptive cubic regularization framework with a worst-case complexity o(𝜖− 3/2). Optimization Online (2017)

  3. Bianconcini, T., Sciandrone, M.: A cubic regularization algorithm for unconstrained optimization using line search and nonmonotone techniques. Optim. Methods Softw. 31, 1008–1035 (2016)

    Article  MathSciNet  Google Scholar 

  4. Birgin, E.G., Martínez, J.M.: The use of quadratic regularization with cubic descent condition for unconstrained optimization. SIAM J. Optim. 27, 1049–1074 (2017)

    Article  MathSciNet  Google Scholar 

  5. Birgin, E.G., Gardenghi, J.L., Martínez, J. M., Santos, S.A., Toint, P.L.: Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models. Math. Program. 163, 359–368 (2017)

    Article  MathSciNet  Google Scholar 

  6. Carmon, Y., Duchi, J.C., Hinder, O., Sidford, A.: Lower bounds for finding stationary points I. Math. Program. 184, 71–120 (2020)

    Article  MathSciNet  Google Scholar 

  7. Cartis, C., Gould, N.I.M., Toint, P.L.: On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization problems. SIAM J. Optim. 20, 2833–2852 (2010)

    Article  MathSciNet  Google Scholar 

  8. Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularization methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Program. 127, 245–295 (2011)

    Article  MathSciNet  Google Scholar 

  9. Cartis, C., Gould, N.I.M., Toint, P. h. L.: Adaptive cubic regularization methods for unconstrained optimization. Part II: worst-case function - and derivative - evaluation complexity. Math. Program. 130, 295–319 (2011)

    Article  MathSciNet  Google Scholar 

  10. Cartis, C., Gould, N.I.M., Toint, P.L.: On the oracle complexity of first-order and derivative-free algorithms for smooth nonconvex minimization. SIAM J. Optim. 22, 66–86 (2012)

    Article  MathSciNet  Google Scholar 

  11. Curtis, F.E., Robinson, D.P., Samadi, M.: A trust-region algorithm with a worst-case complexity of \(\mathcal {O}\left (\epsilon ^{-3/2}\right )\) for nonconvex optimization. Math. Program. 162, 1–32 (2017)

    Article  MathSciNet  Google Scholar 

  12. Demmel, J.: Applied numerical linear algebra. SIAM, Philadelphia (1997)

    Book  Google Scholar 

  13. Dussault, J.-P.: ARCq: a new adaptive regularization by cubics variant. Optim. Methods Softw. https://doi.org/10.1080/10556788.2017.1322080 (2017)

  14. Grapiglia, G.N., Yu, N: Regularized Newton Methods for minimizing functions with hölder continuous Hessians. SIAM J. Optim. 27, 478–506 (2017)

    Article  MathSciNet  Google Scholar 

  15. Grapiglia, G.N., Sachs, E.W.: On the worst-case evaluation complexity of non-monotone line search algorithms. Comput. Optim. Appl. 68, 555–577 (2017)

    Article  MathSciNet  Google Scholar 

  16. Griewank, A.: The Modification of Newton’s Method for Unconstrained Optimization by Bounding Cubic Terms. Technical Report NA/12, Department of Applied Mathematics and Theoretical Physics. University of Cambridge, Cambridge (1981)

    Google Scholar 

  17. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MathSciNet  Google Scholar 

  18. Kohler, J.M., Lucchi, A.: Subsampled cubic regularization for non-convex optimization. 34th Int Conf Machine Learn ICML 2017(4), 2988–3011 (2017)

    Google Scholar 

  19. Martínez, J.M., Raydan, M.: Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization. J. Glob. Optim. 68, 367–385 (2017)

    Article  MathSciNet  Google Scholar 

  20. Melicher, V., Haber, T., Vanroose, W.: Fast derivatives of likelihood functionals for ODE based models using adjoint-state method. Comput. Stat. 32, 1621–1643 (2017)

    Article  MathSciNet  Google Scholar 

  21. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)

    Article  MathSciNet  Google Scholar 

  22. Nesterov, Y., Polyak, B.: Cubic regularization of Newton method and its global performance. Math. Program. 108, 177–205 (2006)

    Article  MathSciNet  Google Scholar 

  23. Niri, T.D., Heydari, M., Hosseini, M.M.: An improvement of adaptive cubic regularization method for unconstrained optimization problems. Int. J. Comput. Math. 98, 271–287 (2021)

    Article  MathSciNet  Google Scholar 

  24. Stapor, P., Froöhlich, F., Hasenauer, J.: Optimization and profile calculation of ODE models using second order adjoint sensitivity analysis. Bioinformatics 34, i151–i159 (2018)

    Article  Google Scholar 

  25. Street, W.N., Wolberg, W.H., Mangasarian, O.L.: Nuclear Feature Extraction for Breast Tumor Diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, vol. 1905, pp.861-870. San Jose, CA (1993)

  26. Wang, Z., Zhou, Y., Liang, Y., Lan, G.: Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization. arXiv:1802.07372 (2018)

  27. Wang, Z., Zhou, Y., Liang, Y., Lan, G.: A note on inexact gradient and Hessian conditions for cubic regularized Newton’s method. Oper. Res. Lett. 47, 146–149 (2019)

    Article  MathSciNet  Google Scholar 

  28. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71, 441–479 (1912)

    Article  MathSciNet  Google Scholar 

  29. Zhang, H.C., Hager, W.W.: A nonmonotone line search technique for unconstrained optimization. SIAM J Optim 14, 1043–1056 (2004)

    Article  MathSciNet  Google Scholar 

  30. Zheng, Y., Zheng, B.: A modified adaptive cubic regularization method for large-scale unconstrained optimization problem. arXiv:1904.07440 [math.OC] (2019)

Download references

Acknowledgments

We are very grateful to the two anonymous referees, whose comments helped to improved the paper.”

Funding

G.N. Grapiglia was partially supported by CNPq - Brazil grant 312777/2020-5. M.L.N. Gonçalves was partially supported by CNPq - Brazil grant 408123/2018-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Grapiglia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grapiglia, G.N., Gonçalves, M.L.N. & Silva, G.N. A cubic regularization of Newton’s method with finite difference Hessian approximations. Numer Algor 90, 607–630 (2022). https://doi.org/10.1007/s11075-021-01200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01200-y

Keywords

Navigation