Skip to main content
Log in

On the circumcentered-reflection method for the convex feasibility problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The ancient concept of circumcenter has recently given birth to the circumcentered-reflection method (CRM). CRM was first employed to solve best approximation problems involving affine subspaces. In this setting, it was shown to outperform the most prestigious projection-based schemes, namely, the Douglas-Rachford method (DRM) and the method of alternating projections (MAP). We now prove convergence of CRM for finding a point in the intersection of a finite number of closed convex sets. This striking result is derived under a suitable product space reformulation in which a point in the intersection of a closed convex set with an affine subspace is sought. It turns out that CRM skillfully tackles the reformulated problem. We also show that for a point in the affine set the CRM iteration is always closer to the solution set than both the MAP and DRM iterations. Our theoretical results and numerical experiments, showing outstanding performance, establish CRM as a powerful tool for solving general convex feasibility problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. Ser. B 95(1), 3–51 (2003). https://doi.org/10.1007/s10107-002-0339-5

    Article  MathSciNet  Google Scholar 

  2. Aragón Artacho, F. J., Borwein, J. M.: Global convergence of a non-convex Douglas–Rachford iteration. J. Glob. Optim. 57(3), 753–769 (2013). https://doi.org/10.1007/s10898-012-9958-4

    Article  MathSciNet  Google Scholar 

  3. Aragón Artacho, F. J., Campoy, R., Tam, M. K.: The Douglas–Rachford algorithm for convex and nonconvex feasibility problems. Math Meth Oper Res. https://doi.org/10.1007/s00186-019-00691-9 (2019)

  4. Bauschke, H. H., Bello-Cruz, J.Y., Nghia, T.T.A., Phan, H.M., Wang, X.: The rate of linear convergence of the Douglas–Rachford algorithm for subspaces is the cosine of the Friedrichs angle. J. Approx. Theory 185, 63–79 (2014). https://doi.org/10.1016/j.jat.2014.06.002

    Article  MathSciNet  Google Scholar 

  5. Bauschke, H. H., Bello-Cruz, J.Y., Nghia, T.T.A., Phan, H.M., Wang, X.: Optimal rates, of linear convergence of relaxed alternating projections and generalized Douglas-Rachford methods for two subspaces. Numer. Algorithms 73 (1), 33–76 (2016). https://doi.org/10.1007/s11075-015-0085-4

    Article  MathSciNet  Google Scholar 

  6. Bauschke, H. H., Borwein, J. M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (2006). https://doi.org/10.1137/S0036144593251710

    Article  MathSciNet  Google Scholar 

  7. Bauschke, H. H., Combettes, P. L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2 edn. CMS Books in Mathematics. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-48311-5

    Book  Google Scholar 

  8. Bauschke, H. H., Dao, M. N., Noll, D., Phan, H. M.: Proximal point algorithm, Douglas-Rachford algorithm and alternating projections: a case study. J. Convex Anal. 23(1), 237–261 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Bauschke, H. H., Moursi, W. M.: The Douglas–Rachford algorithm for two (not necessarily intersecting) affine subspaces. SIAM J. Optim. 26(2), 968–985 (2016). https://doi.org/10.1137/15M1016989

    Article  MathSciNet  Google Scholar 

  10. Bauschke, H. H., Moursi, W. M.: On the Douglas–Rachford algorithm. Math. Program. 164(1), 263–284 (2017). https://doi.org/10.1007/s10107-016-1086-3

    Article  MathSciNet  Google Scholar 

  11. Bauschke, H. H., Noll, D., Phan, H. M.: Linear and strong convergence of algorithms involving averaged nonexpansive operators. J. Math. Anal. Appl. 421(1), 1–20 (2015). https://doi.org/10.1016/j.jmaa.2014.06.075

    Article  MathSciNet  Google Scholar 

  12. Bauschke, H. H., Ouyang, H., Wang, X.: On circumcenters of finite sets in Hilbert spaces. Linear Nonlinear Anal. 4(2), 271–295 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Bauschke, H. H., Ouyang, H., Wang, X.: Circumcentered methods induced by isometries. arXiv:1908.11576 (2019)

  14. Bauschke, H. H., Ouyang, H., Wang, X.: On circumcenter mappings induced by nonexpansive operators. Pure and Applied Functional Analysis (in press) (2020)

  15. Bauschke, H. H., Ouyang, H., Wang, X.: On the linear convergence of circumcentered isometry methods. arXiv:1912.01063 (2019)

  16. Behling, R., Bello-Cruz, J.Y., Santos, L.R.: Circumcentering the Douglas–Rachford method. Numer. Algorithms 78(3), 759–776 (2018). https://doi.org/10.1007/s11075-017-0399-5

    Article  MathSciNet  Google Scholar 

  17. Behling, R., Bello-Cruz, J.Y., Santos, L.R.: On the linear convergence of the circumcentered-reflection method. Oper. Res. Lett. 46(2), 159–162 (2018). https://doi.org/10.1016/j.orl.2017.11.018

    Article  MathSciNet  Google Scholar 

  18. Behling, R., Bello-Cruz, J-Y, Santos, L-R: The block-wise circumcentered–reflection method. Comput. Optim. Appl. 76, 675–699 (2020). https://doi.org/10.1007/s10589-019-00155-0

    Article  MathSciNet  Google Scholar 

  19. Benoist, J.: The Douglas–Rachford algorithm for the case of the sphere and the line. J. Glob. Optim. 63(2), 363–380 (2015). https://doi.org/10.1007/s10898-015-0296-1

    Article  MathSciNet  Google Scholar 

  20. Borwein, J.M., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. https://doi.org/10.1007/978-1-4419-9569-8_6. Series Title: Springer Optimization and Its Applications, vol. 49, pp 93–109. Springer, New York (2011)

  21. Borwein, J. M., Tam, M. K.: A cyclic Douglas–Rachford iteration scheme. J. Optim. Theory Appl. 160(1), 1–29 (2014). https://doi.org/10.1007/s10957-013-0381-x

    Article  MathSciNet  Google Scholar 

  22. Borwein, J. M., Tam, M. K.: The cyclic Douglas-Rachford method for inconsistent feasibility problems. J. Nonlinear Convex Anal. Int. J. 16 (4), 573–584 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Cucker, F., Peña, J., Roshchina, V.: Solving second-order conic systems with variable precision. Math. Program. 150(2), 217–250 (2015). https://doi.org/10.1007/s10107-014-0767-z

    Article  MathSciNet  Google Scholar 

  24. Dizon, N., Hogan, J., Lindstrom, S.B.: Circumcentering reflection methods for nonconvex feasibility problems. arXiv:1910.04384 (2019)

  25. Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002). https://doi.org/10.1007/s101070100263

    Article  MathSciNet  Google Scholar 

  26. Douglas, J., Rachford Jr., H. H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82 (2), 421–421 (1956). https://doi.org/10.1090/S0002-9947-1956-0084194-4

    Article  MathSciNet  Google Scholar 

  27. Euclid, H.T.L.: The Thirteen Books of Euclid’s Elements, 2nd edn., vol. II. Dover Publications, Inc., New York (1956)

  28. Lindstrom, S. B., Sims, B.: Survey: Sixty years of Douglas–Rachford. arXiv:1809.07181 (2018)

  29. Lobo, M. S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1-3), 193–228 (1998). https://doi.org/10.1016/S0024-3795(98)10032-0

    Article  MathSciNet  Google Scholar 

  30. Ouyang, H.: Circumcenter operators in Hilbert spaces. Master Thesis, University of British Columbia, Okanagan CA. https://doi.org/10.14288/1.0371095 (2018)

  31. Phan, H. M.: Linear convergence of the Douglas–Rachford method for two closed sets. Optimization 65(2), 369–385 (2016). https://doi.org/10.1080/02331934.2015.1051532

    Article  MathSciNet  Google Scholar 

  32. Pierra, G.: Decomposition through formalization in a product space. Math. Program. 28 (1), 96–115 (1984). https://doi.org/10.1007/BF02612715

    Article  MathSciNet  Google Scholar 

  33. Svaiter, B. F.: On weak convergence of the Douglas–Rachford method. SIAM J. Control Optim. 49(1), 280–287 (2011). https://doi.org/10.1137/100788100

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their valuable suggestions which significantly improved this manuscript.

Funding

RB was partially supported by the Brazilian Agency Conselho Nacional de Desenvolvimento Científico e Tecnoógico (CNPq), Grants 304392/2018-9 and 429915/2018-7; YBC was partially supported by the National Science Foundation (NSF), Grant DMS – 1816449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Behling.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behling, R., Bello-Cruz, Y. & Santos, LR. On the circumcentered-reflection method for the convex feasibility problem. Numer Algor 86, 1475–1494 (2021). https://doi.org/10.1007/s11075-020-00941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00941-6

Keywords

Mathematics Subject Classification (2010)

Navigation