Skip to main content
Log in

Stationary distribution of the stochastic theta method for nonlinear stochastic differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The existence and uniqueness of the stationary distribution of the numerical solution generated by the stochastic theta method are studied. When the parameter theta takes different values, the requirements on the drift and diffusion coefficients are different. The convergence of the numerical stationary distribution to the true counterpart is investigated. Several numerical experiments are presented to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abdulle, A., Almuslimani, I., Vilmart, G.: Optimal explicit stabilized integrator of weak order 1 for stiff and ergodic stochastic differential equations. SIAM/ASA J. Uncertain. Quantif. 6(2), 937–964 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao, J., Shao, J., Yuan, C.: Approximation of invariant measures for regime-switching diffusions. Potential Anal. 44(4), 707–727 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berkolaiko, G., Buckwar, E., Kelly, C., Rodkina, A.: Almost sure asymptotic stability analysis of the 𝜃-Maruyama method applied to a test system with stabilising and destabilising stochastic perturbations. LMS J. Comput. Math. 15, 71–83 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, L., Wu, F.: Almost sure exponential stability of the 𝜃-method for stochastic differential equations. Statist. Probab. Lett. 82(9), 1669–1676 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Higham, D.J.: Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal. 38(3), 753–769 (2000). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, Volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam (1981)

    Google Scholar 

  9. Li, X., Ma, Q., Yang, H., Yuan, C.: The numerical invariant measure of stochastic differential equations with Markovian switching. SIAM J. Numer. Anal. 56(3), 1435–1455 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, X., Mao, X., Yin, G.: Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: Truncation methods, convergence in pth moment and stability. IMA J. Numer. Anal. 39(2), 847–892 (2019)

    Article  MathSciNet  Google Scholar 

  11. Liu, W., Mao, X.: Numerical stationary distribution and its convergence for nonlinear stochastic differential equations. J. Comput. Appl. Math. 276, 16–29 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mao, X.: Stability of Stochastic Differential Equations with Respect to Semimartingales, Volume 251 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow (1991)

    Google Scholar 

  13. Mao, X., Yuan, C., Yin, G.: Numerical method for stationary distribution of stochastic differential equations with Markovian switching. J. Comput. Appl Math. 174(1), 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Massey, F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Amer. Statist. Assoc. 46(253), 68–78 (1951)

    Article  MATH  Google Scholar 

  15. Qiu, Q., Liu, W., Hu, L.: Asymptotic moment boundedness of the stochastic theta method and its application for stochastic differential equations. Adv Difference Equ. 310(14), 2014 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Rodkina, A., Schurz, H.: Almost sure asymptotic stability of drift-implicit 𝜃-methods for bilinear ordinary stochastic differential equations in R1. J. Comput. Appl Math. 180(1), 13–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1973). Mathematics in Science and Engineering, vol. 103

    MATH  Google Scholar 

  18. Talay, D.: Second-order discretization schemes of stochastic differential systems for the computation of the invariant law. Stochastics 29(1), 13–36 (1990)

    MATH  Google Scholar 

  19. Wang, W., Wen, L., Li, S.: Nonlinear stability of 𝜃-methods for neutral differential equations in Banach space. Appl. Math Comput. 198(2), 742–753 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Weng, L., Liu, W.: Invariant measures of the Milstein method for stochastic differential equations with commutative noise. Appl. Math Comput. 358, 169–176 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, H., Li, X.: Explicit approximations for nonlinear switching diffusion systems in finite and infinite horizons. J. Diff. Equ. 265(7), 2921–2967 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yuan, C., Mao, X.: Stability in distribution of numerical solutions for stochastic differential equations. Stochastic Anal. Appl. 22(5), 1133–1150 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yuan, C., Mao, X.: Stationary distributions of Euler-Maruyama-type stochastic difference equations with Markovian switching and their convergence. J. Difference Equ. Appl. 11(1), 29–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zong, X., Wu, F.: Choice of 𝜃 and mean-square exponential stability in the stochastic theta method of stochastic differential equations. J. Comput. Appl Math. 255, 837–847 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zong, X., Wu, F., Huang, C.: Theta schemes for SDDEs with non-globally Lipschitz continuous coefficients. J. Comput. Appl Math. 278, 258–277 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers and the editor for their very important and valuable comments and suggestions, which help to improve this paper significantly.

Funding

This study received financial support from the National Natural Science Foundation of China (11701378, 11871343), “Chenguang Program” supported by both Shanghai Education Development Foundation and Shanghai Municipal Education Commission (16CG50), Shanghai Pujiang Program (16PJ1408000), and Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 3.4

Denote

$$ \begin{array}{@{}rcl@{}} \theta^{*}=1+\frac{K_{1}}{4K_{2}}, ~ \lambda=\frac{2K_{2}+K_{1}}{2K_{2}}\wedge(2\theta-1). \end{array} $$

When 𝜃 ∈ [1/2,𝜃], using Lemma 3.2 with λ1 = (1 − 𝜃)h and λ2 = (1 − 𝜃 + λ)h we have

$$ \begin{array}{@{}rcl@{}} &&\left|(X_{k+1}^{x}-X_{k+1}^{y})-(1-\theta+\lambda)h(f(X_{k+1}^{x})-f(X_{k+1}^{y}))\right|^{2} \\ &\leq &\left|(X_{k+1}^{x}-X_{k+1}^{y})-\theta h(f(X_{k+1}^{x})-f(X_{k+1}^{y}))\right|^{2}\\ &&+2(2\theta-1-\lambda)h\langle X_{k+1}^{x}-X_{k+1}^{y},f(X_{k+1}^{x})-f(X_{k+1}^{y})\rangle\\ &\leq &\left|({X_{k}^{x}}-{X_{k}^{y}})-(1-\theta)h(f({X_{k}^{x}})-f({X_{k}^{y}}))\right|^{2}\\ &&+4(1-\theta)h\langle {X_{k}^{x}}-{X_{k}^{y}},f({X_{k}^{x}})-f({X_{k}^{y}})\rangle+|g({X_{k}^{x}})-g({X_{k}^{y}})|^{2}h\\ &&+2(2\theta-1-\lambda)h\langle X_{k+1}^{x}-X_{k+1}^{y},f(X_{k+1}^{x})-f(X_{k+1}^{y})\rangle+M_{k}\\ &\leq&\left|\frac{1-K_{2}(1-\theta)h}{1-K_{2}(1-\theta+\lambda)h}\right|^{2}\left|({X_{k}^{x}}-{X_{k}^{y}})-(1-\theta+\lambda)h(f({X_{k}^{x}})-f({X_{k}^{y}}))\right|^{2}\\ &&+4(1-\theta)h\langle {X_{k}^{x}}-{X_{k}^{y}},f({X_{k}^{x}})-f({X_{k}^{y}})\rangle+|g({X_{k}^{x}})-g({X_{k}^{y}})|^{2}h\\ &&+2(2\theta-1-\lambda)h\langle X_{k+1}^{x}-X_{k+1}^{y},f(X_{k+1}^{x})-f(X_{k+1}^{y})\rangle+M_{k}, \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} M_{k}&=&2\langle({X_{k}^{x}}-{X_{k}^{y}})+(1-\theta)h(f({X_{k}^{x}})-f({X_{k}^{y}})),g({X_{k}^{x}})-g({X_{k}^{y}})\rangle{\Delta} B_{k}\\ &&+|g({X_{k}^{x}})-g({X_{k}^{y}})|^{2}(|{\Delta} B_{k}|^{2}-h). \end{array} $$

It is clear that \(\mathbb {E}M_{k}=0\). Denote

$$W_{k}=\mathbb{E}\left|({X_{k}^{x}}-{X_{k}^{y}})-(1-\theta)h(f({X_{k}^{x}})-f({X_{k}^{y}}))\right|^{2},$$

and

$$L_{h}=\frac{(1-K_{2}(1-\theta)h)^{2}}{(1-K_{2}(1-\theta+\lambda)h)^{2}}.$$

By Conditions 2.5 and 2.5, we have

$$ \begin{array}{@{}rcl@{}} W_{k+1}&\leq& L_{h} W_{k}+[4(1-\theta)K_{2}h+K_{1} h]\mathbb{E}|{X_{k}^{x}}-{X_{k}^{y}}|^{2}\\ &&+2K_{2} h(2\theta-1-\lambda)\mathbb{E}|X_{k+1}^{x}-X_{k+1}^{y}|^{2}\\ &\leq&L_{h}^{k+1}[W_{0}-2(2\theta{\kern1.7pt}-{\kern1.7pt}1-\lambda)K_{2} h\mathbb{E}|x-y|^{2}]\!+\varphi_{\lambda}(\theta)h\sum\limits_{i=0}^{k}L_{h}^{k-i}\mathbb{E}|{X_{i}^{x}}-{X_{i}^{y}}|^{2}, \end{array} $$

where

$$\varphi_{\lambda}(\theta)=4(1-\theta)K_{2}+K_{1}+2(2\theta-1-\lambda)K_{2}L_{h}.$$

For 𝜃 ∈ [1/2,𝜃], we have \(\varphi _{\lambda }^{h}<0\). Since \(\mathbb {E}|{X_{k}^{x}}-{X_{k}^{y}}|^{2}\leq W_{k}\) and Lh ∈ (0, 1), we obtain

$$ \mathbb{E}|{X_{k}^{x}}-{X_{k}^{y}}|^{2}\leq c_{3}, $$

where

$$ c_{3} := {L_{h}^{k}}[W_{0}-2(2\theta-1-\lambda)K_{2}h|x-y|^{2}]. $$

Therefore, the assertion holds for 𝜃 ∈ [1/2,𝜃].

For 𝜃 ∈ (𝜃, 1], choosing λ < λ sufficiently small such that \(\psi _{\lambda ^{\prime }}(\theta )<0\) for any h > 0, the assertion can be proved using the similar arguments above. □

Proof of Lemma 3.9

From (2.2), by applying Condition 2.5, we have

$$ \begin{array}{@{}rcl@{}} |X_{k+1}^{x}{\kern1.7pt}-{\kern1.7pt}X_{k+1}^{y}|^{2}&{\kern1.7pt}={\kern1.7pt}&\langle X_{k+1}^{x}-X_{k+1}^{y},{X_{k}^{x}}-{X_{k}^{y}}+(1-\theta)[f({X_{k}^{x}})-f({X_{k}^{y}})]h\\ &&\!+[g({X_{k}^{x}}){\kern1.7pt}-{\kern1.7pt}g({X_{k}^{y}})]{\Delta} B_{k}\rangle{\kern1.7pt}+{\kern1.7pt}\langle X_{k+1}^{x}{\kern1.7pt}-{\kern1.7pt}X_{k+1}^{y},f(X_{k+1}^{x}){\kern1.7pt}-{\kern1.7pt}f(X_{k+1}^{y})\rangle\theta h\\ &\!\leq\!&\frac{1}{2}|X_{k+1}^{x}-X_{k+1}^{y}|^{2}+\frac{1}{2}|{X_{k}^{x}}-{X_{k}^{y}}+(1-\theta)[f({X_{k}^{x}})-f({X_{k}^{y}})]h\\ &&+[g({X_{k}^{x}})-g({X_{k}^{y}})]{\Delta} B_{k}|^{2}+\theta hK_{2}|X_{k+1}^{x}-X_{k+1}^{y}|^{2} \\ &\!\leq\! & \left( \frac{1}{2}-K_{2}\theta h \right)^{-1} \left( \frac{1}{2}|{X_{k}^{x}}{\kern1.7pt}-{\kern1.7pt}{X_{k}^{y}}|^{2}+\frac{1}{2}(1{\kern1.7pt}-{\kern1.7pt}\theta)^{2}|f({X_{k}^{x}}){\kern1.7pt}-{\kern1.7pt}f({X_{k}^{y}})|^{2}h^{2}\right.\\ &&\!+\frac{1}{2}|g({X_{k}^{x}})-g({X_{k}^{y}})|^{2} |{\Delta} B_{k}|^{2}\\ &&\!\left.+(1-\theta)h\langle {X_{k}^{x}}-{X_{k}^{y}},f({X_{k}^{x}})-f({X_{k}^{y}})\rangle +Q_{1} \vphantom{\frac{1}{2}}\right), \end{array} $$

where

$$ Q_{1}=\langle ({X_{k}^{x}}-{X_{k}^{y}}) + (1-\theta)h f({X_{k}^{x}})-f({X_{k}^{y}}) ,g({X_{k}^{x}})-g({X_{k}^{y}})\rangle{\Delta} B_{k}. $$

Since \(\mathbb {E}Q_{1}=0\), taking expectations on both sides and using Conditions 2.4, 2.5, and 3.6 yield

$$ \begin{array}{@{}rcl@{}} \mathbb{E} |X_{k+1}^{x}-X_{k+1}^{y}|^{2}\leq&\frac{1+(1-\theta)^{2}h^{2}K_{1}+hK_{1}+2K_{2}(1-\theta)h}{1-2K_{2}\theta h}|{X_{k}^{x}}-{X_{k}^{y}}|^{2}. \end{array} $$

By iterations, we have

$$ \mathbb{E}|X_{k+1}^{x}-X_{k+1}^{y}|^{2}\leq \bar{C}_{3}^{k+1}\mathbb{E}|x-y|^{2}, $$

where

$$ \bar{C}_{3}=\frac{1+(1-\theta)^{2}h^{2}K_{1}+hK_{1}+2K_{2}(1-\theta)h}{1-2K_{2}\theta h}. $$

Since h < −(2K2 + K1)/((1 − 𝜃)2K1) and 1 − 2K2𝜃h > 1, we have \(\bar {C}_{3} \in (0,1)\). Let \(C_{3} = \bar {C}_{3}^{k+1}\), the proof is completed. □

Proof of Lemma 3.10

By the elementary inequality and Condition 2.6, we derive from (2.2) that

$$ \begin{array}{@{}rcl@{}} |X_{k+1}|^{2}&=&\langle X_{k+1}, X_{k}+(1-\theta) f(X_{k})h+g(X_{k}){\Delta} B_{k} \rangle+\langle X_{k+1}, \theta f(X_{k+1})h \rangle\\ &\leq& \frac{1}{2}|X_{k+1}|^{2} \!+ \frac{1}{2}|X_{k}+(1{\kern1.7pt}-{\kern1.7pt}\theta) f(X_{k})h {\kern1.7pt}+{\kern1.7pt}g(X_{k}){\Delta} B_{k}|^{2} \!+ \theta h(\mu|X_{k+1}|^{2}\!+a). \end{array} $$

Applying Conditions 2.6, 2.7, and 3.7, we get

$$ \begin{array}{@{}rcl@{}} |X_{k+1}|^{2}&\leq & \frac{1}{2}\left( \frac{1}{2}-\theta h \mu\right)^{-1}[|X_{k}|^{2}+(1-\theta)^{2} h^{2} |f(X_{k})|^{2}+|g(X_{k})|^{2}|{\Delta} B_{k}|^{2}\\ &&+ 2 h (1-\theta)\langle X_{k},f(X_{k})\rangle+2 \langle X_{k},g(X_{k})\rangle {\Delta} B_{k}\\ &&+2 (1-\theta) h \langle f(X_{k}),g(X_{k})\rangle {\Delta} B_{k}]+\left( \frac{1}{2}-\theta h \mu\right)^{-1}\theta h a\\ &\leq&D_{1}|X_{k}|^{2}+D_{2}|g(X_{k})|^{2}|{\Delta} B_{k}|^{2}+D_{3}, \end{array} $$

where

$$ D_{1}= \frac{1+\frac{1}{2}\kappa h^{2}(1-\theta)^{2}+h\mu(1-\theta)+\frac{1}{2}\kappa h(1-\theta)}{\frac{1}{2}-h\mu\theta}, $$
$$ D_{2}= \frac{1+\frac{1}{2} h (1-\theta)}{\frac{1}{2}-h \mu \theta}, $$

and

$$ D_{3}= \frac{\frac{1}{2}h(1-\theta)c+\frac{1}{2}ch^{2}(1-\theta)^{2}+ah(1-\theta)+ah\theta}{\frac{1}{2}-h\mu\theta}. $$

Summarizing both sides yields

$$ \begin{array}{@{}rcl@{}} \sum\limits_{i=1}^{k+1}|X_{i}|^{2}=D_{1}\sum\limits_{i=0}^{k}|X_{i}|^{2}+D_{2}\sum\limits_{i=0}^{k}|g(X_{i})|^{2}|{\Delta} B_{i}|^{2}+(k+1)D_{3}. \end{array} $$

Now, we have

$$ \begin{array}{@{}rcl@{}} |X_{k+1}|^{2}=(D_{1}-1)\sum\limits_{i=0}^{k}|X_{i}|^{2}+|X_{0}|^{2}+D_{2}\sum\limits_{i=0}^{k}|g(X_{i})|^{2}|{\Delta} B_{i}|^{2}+(k+1)D_{3}. \end{array} $$

Taking the supreme and expectation on both sides gives

$$ \begin{array}{@{}rcl@{}} \mathbb{E} \left( \sup\limits_{0 \leq k \leq n} |X_{k}|^{2} \right) &\leq&(D_{1}-1)\sum\limits_{i=0}^{k}\mathbb{E} \left( \sup\limits_{0 \leq k \leq n} |X_{i}|^{2} \right)\\ &&+D_{2}\mathbb{E} \left( \sup\limits_{0 \leq k \leq n}(\sum\limits_{i=0}^{k}|g(X_{i})|^{2}|{\Delta} B_{i}|^{2})\right)+(n+1)D_{3}+|X_{0}|^{2}. \end{array} $$

Now, we obtain

$$ \begin{array}{@{}rcl@{}} \mathbb{E} \left( \sup\limits_{0 \leq k \leq n} |X_{k}|^{2} \right) &\leq&(D_{1}-1+D_{2}h^{2}\sigma)\sum\limits_{j=0}^{n}\mathbb{E} \left( \sup\limits_{0 \leq i \leq j} |X_{i}|^{2} \right)\\ &&+D_{2}h^{2}nb+(n+1)D_{3}+|X_{0}|^{2}, \end{array} $$

where \(\mathbb {E} |{\Delta } B_{k}|^{2} = h\) is used. By Lemma 2.10, we have

$$ \mathbb{E} \left( \sup\limits_{0 \leq k \leq n} |X_{k}|^{2} \right) \leq (D_{2}h^{2}kb+(k+1)D_{3}+|X_{0}|^{2})\exp ((k+1)(D_{1}-1+D_{2}h^{2}\sigma)). $$

The proof is completed. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Weng, L. & Liu, W. Stationary distribution of the stochastic theta method for nonlinear stochastic differential equations. Numer Algor 83, 1531–1553 (2020). https://doi.org/10.1007/s11075-019-00735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00735-5

Keywords

Mathematics Subject Classification (2010)

Navigation