Skip to main content
Log in

Computing the Lambert W function in arbitrary-precision complex interval arithmetic

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We describe an algorithm to evaluate all the complex branches of the Lambert W function with rigorous error bounds in arbitrary-precision interval arithmetic or ball arithmetic. The classic 1996 paper on the Lambert W function by Corless et al. provides a thorough but partly heuristic numerical analysis of the Lambert W function which needs to be complemented with some explicit inequalities and practical observations about managing precision and branch cuts. An implementation is provided in the Arb library.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, N., Bikineev, A., Bristow, P.A., Guazzone, M., Kormanyos, C., Holin, H., Lalande, B., Maddock, J., Murphy, J., Råade, J., Sewani, G., Sobotta, B., Thompson, N., van den Berg, T., Walker, D., Zhang, X.: BOOST C++ Libraries: Lambert W function https://www.boost.org/doc/libs/develop/libs/math/doc/html/math_toolkit/lambert_w.html (2017)

  2. Barry, D.A., Culligan-Hensley, P.J., Barry, S.J.: Real values of the W-function. ACM Trans. Math. Softw. 21(2), 161–171 (1995)

    Article  MathSciNet  Google Scholar 

  3. Chapeau-Blondeau, F., Monir, A.: Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 50(9), 2160–2165 (2002)

    Article  MathSciNet  Google Scholar 

  4. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5(1), 329–359 (1996)

    Article  MathSciNet  Google Scholar 

  5. Fitsch, F.N., Shafer, R.E., Crowley, W.P.: Algorithm 443: Solution of the transcendental equation wew = x. Commun. ACM 16(2), 123–124 (1973)

    Article  Google Scholar 

  6. Fukushima, T.: Precise and fast computation of Lambert W-functions without transcendental function evaluations. J. Comput. Appl. Math. 244, 77–89 (2013)

    Article  MathSciNet  Google Scholar 

  7. van der Hoeven, J.: Ball arithmetic. Tech. rep., HAL. http://hal.archives-ouvertes.fr/hal-00432152/fr/ (2009)

  8. Jeffrey, D.J.: Celebrating 20 years of the Lambert W function http://www.apmaths.uwo.ca/~djeffrey/LambertW/LambertW.html (2016)

  9. Johansson, F.: Efficient implementation of elementary functions in the medium-precision range. In: 22Nd IEEE Symposium on Computer Arithmetic, ARITH22, pp. 83–89. https://doi.org/10.1109/ARITH.2015.16 (2015)

  10. Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66, 1281–1292 (2017). https://doi.org/10.1109/TC.2017.2690633

    Article  MathSciNet  MATH  Google Scholar 

  11. Johansson, F., et al.: mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.1) http://mpmath.org (2018)

  12. Kalugin, G.A., Jeffrey, D.J.: Convergence in C of series for the Lambert W function. arXiv:1208.0754 (2012)

  13. Lawrence, P.W., Corless, R.M., Jeffrey, D.J.: Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Softw. 38(3), 20 (2012)

    Article  MathSciNet  Google Scholar 

  14. Maplesoft: Productlog – Maple Programming Help https://www.maplesoft.com/support/help/maple/view.aspx?path=LambertW (2019)

  15. Moore, R.E.: Methods and applications of interval analysis. SIAM (1979)

  16. Olver, F.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  17. Veberič, D.: Lambert W function for applications in physics. Comput. Phys. Commun. 183(12), 2622–2628 (2012)

    Article  MathSciNet  Google Scholar 

  18. Wolfram Research: Productlog – Wolfram Language Documentation https://reference.wolfram.com/language/ref/ProductLog.html (2019)

  19. Ziv, A.: Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM Trans. Math. Softw. 17(3), 410–423 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the two referees, whose input greatly improved the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Johansson.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansson, F. Computing the Lambert W function in arbitrary-precision complex interval arithmetic. Numer Algor 83, 221–242 (2020). https://doi.org/10.1007/s11075-019-00678-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00678-x

Keywords

Navigation