Skip to main content
Log in

An h-p version of the continuous Petrov-Galerkin finite element method for Riemann-Liouville fractional differential equation with novel test basis functions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we develop an h-p version of finite element method for one-dimensional fractional differential equation \(-_{0}D_{x}^{\alpha }u+Au=f(x)\) with Dirichlet boundary condition. First, we introduce the existence and uniqueness of the considered problem and show the wellposedness of the corresponding weak form. To solve the mentioned equation, the classical hierarchical polynomials are employed as the trial basis functions. Then, we develop a kind of novel test basis functions for the Petrov-Galerkin finite element method such that the stiffness matrix becomes an identity matrix and the coefficient matrix often has a small condition number. Moreover, we give some properties of the developed test basis functions, and discuss the implementation of the developed finite element method in detail. It is shown that the implementation of our method is easier than that of other finite (and spectral) element methods. Finally, we give a numerical example, and the numerical results show the effectiveness of the develped method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castillo-Negrete, D., del Carreras, B., Lynch, V.: Front dynamics in reaction-diffusion systems with levy flights: a fractional diffusion approach. Phys. Rev. Lett. 91, 018302 (2003)

    Article  Google Scholar 

  2. Chen, M., Deng, W.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ding, Z., Xiao, A., Li, M.: Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients. J. Comput. Appl. Math. 233, 1905–1914 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Part. D. E 22, 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Herrmann, R.: Fractional Calculus: an Introduction for Physicists. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  6. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2000)

    Book  MATH  Google Scholar 

  7. Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comp. 84, 2665–2700 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jin, B., Lazarov, R., Zhou, Z.: A Petrov–Galerkin finite element method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 54, 481–503 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: A Petrov–Galerkin spectral element method for fractional elliptic problems. Comput. Methods Appl. Mech. Engrg. 324, 512–536 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications Of Fractional Differential Equations. Elsevier, Boston (2006)

    MATH  Google Scholar 

  11. Kopteva, N., Stynes, M.: Analysis and numerical solution of a Riemann-Liouville fractional derivative two-point boundary value problem. Adv. Comput. Math. 43, 77–99 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Mao, Z., Shen, J.: Spectral element method with geometric mesh for two-sided fractional differential equations. Adv. Comput. Math. https://doi.org/10.1007/s10444-017-9561-9 (2017)

  14. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  17. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  18. Sousa, E.: A second order explicit finite difference method for the fractional advection diffusion equation. Comput. Math. Appl. 64, 3141–3152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stynes, M., O’riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tadjeran, C., Meerschaert, M.M., Scheffler, H.-P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, H., Yang, D., Zhu, S.: Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM J. Numer. Anal. 52, 1292–1310 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhao, Y., Bu, W., Zhao, X., Tang, Y.: Galerkin finite element method for two-dimensional space and time fractional Bloch–Torrey equation. J. Comput. Phys. 350, 117–135 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zheng, Y., Li, C., Zhao, Z.: A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59, 1718–1726 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author sincerely thanks Prof. George Em Karniadakis for giving a chance to visit Brown University for two months.

Funding

This research is supported by the National Natural Science Foundation of China (Nos. 11601460, 11671343), the Natural Science Foundation of Hunan Province of China (No. 2018JJ3491), and the Research Foundation of Education Commission of Hunan Province of China (No. 16C1540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, W., Xiao, A. An h-p version of the continuous Petrov-Galerkin finite element method for Riemann-Liouville fractional differential equation with novel test basis functions. Numer Algor 81, 529–545 (2019). https://doi.org/10.1007/s11075-018-0559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0559-2

Keywords

Navigation