Skip to main content
Log in

High order structure preserving explicit methods for solving linear-quadratic optimal control problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider the numerical integration of linear-quadratic optimal control problems. This problem requires the solution of a boundary value problem: a non-autonomous matrix Riccati differential equation (RDE) with final conditions coupled with the state vector equation with initial conditions. The RDE has positive definite matrix solution and to numerically preserve this qualitative property we propose first to integrate this equation backward in time with a sufficiently accurate scheme. Then, this problem turns into an initial value problem, and we analyse splitting and Magnus integrators for the forward time integration which preserve the positive definite matrix solutions for the RDE. Duplicating the time as two new coordinates and using appropriate splitting methods, high order methods preserving the desired property can be obtained. The schemes make sequential computations and do not require the storrage of intermediate results, so the storage requirements are minimal. The proposed methods are also adapted for solving linear-quadratic N-player differential games. The performance of the splitting methods can be considerably improved if the system is a perturbation of an exactly solvable problem and the system is properly split. Some numerical examples illustrate the performance of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abou-Kandil, H., Freiling, G., Ionescy, V., Jank, G.: Matrix Riccati equations in control and systems theory. Basel, Burkhäuser Verlag (2003)

    Book  MATH  Google Scholar 

  2. Al-Mohy, A.H., Higham, N.J.: Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators. SIAM. J. Sci. Comp. 33, 488–511 (2011)

    MATH  MathSciNet  Google Scholar 

  3. Anderson, B.D.O., Moore, J.B.: Optimal control: linear quadratic methods. Dover, New York (1990)

    MATH  Google Scholar 

  4. Ascher, U.M., Mattheij, R.M., Russell, R.D.: Numerical solutions of boundary value problems for ordinary differential equations. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  5. Bader, P., Blanes, S., Ponsoda, E.: Structure preserving integrators for solving linear quadratic optimal control problems with applications to describe the flight of a quadrotor. J. Comput. Appl. Math. 262, 223–233 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Basar, T., Olsder, G.J.: Dynamic non cooperative game theory, 2nd Ed, SIAM, Philadelphhia (1999)

    Google Scholar 

  7. Blanes, S., Casas, F.: On the necessity of negative coefficients for operator splitting schemes of order higher than two. Appl. Num. Math. 54, 23–37 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blanes, S., Casas, F., Farrés, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Numer. Math. 68, 58–72 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2009)

    Article  MathSciNet  Google Scholar 

  10. Blanes, S., Casas, F., Ros, J.: High order optimized geometric integrators for linear differential equations. BIT 42, 262–284 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Blanes, S., Diele, F., Marangi, C., Ragni, S.: Splitting and composition methods for explicit time dependence in separable dynamical systems. J. Comput. Appl. Math. 235, 646–659 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Blanes, S., Moan, P.C.: Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrm methods. J. Comput. Appl. Math. 142, 313–330 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Blanes, S., Ponsoda, E.: Magnus integrators for solving linear-quadratic differential games. J. Comput. Appl. Math. 236, 3394–3408 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Brif, C., Chakrabarti, R., Rabitz, H.: Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008(68pp) (2010)

    Article  Google Scholar 

  15. Cruz, J.B., Chen, C.I.: Series Nash solution of two person non zero sum linear quadratic games. J. Optim. Theory Appl. 7, 240–257 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dieci, L., Eirola, T.: Positive definitness in the numerical solution of Riccati differential quations. Numer. Math. 67, 303–313 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Engwerda, J.: LQ dynamic optimization and differential games. Wiley (2005)

  18. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations (2nd edition). Springer Series in Computational Mathematics, 31. Springer-Verlag (2006)

  19. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numerica 19, 209–286 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985)

    Book  MATH  Google Scholar 

  21. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie group methods. Acta Numerica 9, 215–365 (2000)

    Article  Google Scholar 

  22. Iserles, A., Nørsett, S.P.: On the solution of linear differential equations in Lie groups. Phil. Trans. R. Soc. Lond. A 357, 983–1019 (1999)

    Article  MATH  Google Scholar 

  23. Jódar, L., Ponsoda, E.: Non-autonomous Riccati-type matrix differential equations: existence interval, construction of continuous numerical solutions and error bounds. IMA. J. Num. Anal. 15, 61–74 (1995)

    Article  MATH  Google Scholar 

  24. Jódar, L., Ponsoda, E., Company, R.: Solutions of coupled Riccati equations arising in differential games. Control. Cybern. 24, 117–128 (1995)

    MATH  Google Scholar 

  25. Kaitala, V, Pohjola, M. In: Carraro, Filar (eds.) : Sustainable international agreement on greenhouse warming. A game theory study. Control and Game Theoretic Models of the Environment, pp 67–87. Birkhauser, Boston (1995)

  26. Keller, H.B.: Numerical solution of two point boundary value problems. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 24. SIAM, Philadelphia (1976)

    Book  Google Scholar 

  27. McLachlan, R.I.: Composition methods in the presence of small parameters. BIT 35, 258–268 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. McLachlan, R.I., Quispel, R.: Splitting Methods. Acta Numer. 11, 341–434 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Moler, C.B., Van Loan, C.F.: Nineteen Dubious Ways to Compute the Exponential of a Matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Na, T.Y.: Computational methods in engineering boundary value problems. In: Mathematics in Science and Engineering, Vol. 145. Accademic Press, New York (1979)

  31. Palao, J.P., Kosloff, R.: Quantum computing by an optimal control algorithm for unitry transformations. Phys. Rev. Lett. 28 (2002)

  32. Peirce, A.P., Dahleh, M.A., Rabitz, H.: Optimal control of quantum-mechanical systems: existence, numerical approximation, and applications. Phys. Rev. A 37, 4950–4967 (1988)

    Article  MathSciNet  Google Scholar 

  33. Reid, W.T.: Riccati Differential Equations. Academic, New York (1972)

    MATH  Google Scholar 

  34. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)

    Book  MATH  Google Scholar 

  35. Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Software 24, 130–156 (1998)

    Article  MATH  Google Scholar 

  36. Speyer, J.L., Jacobson, D.H.: Primer on optimal control theory. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  37. Starr, A.W., Ho, Y.C.: Non-zero sum differential games. J. Optim. Theory and Appl 3, 179–197 (1969)

    Google Scholar 

  38. Zhu, W., Rabitz, H.: A rapid monotonically convergent iteration algorithm for quantum optimal control ever the expectation value of a positive definite operator. J. Chem. Phys. 109, 385–391 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Blanes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanes, S. High order structure preserving explicit methods for solving linear-quadratic optimal control problems. Numer Algor 69, 271–290 (2015). https://doi.org/10.1007/s11075-014-9894-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9894-0

Keywords

Navigation