Skip to main content
Log in

Family constraining of iterative algorithms

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In constraining iterative processes, the algorithmic operator of the iterative process is pre-multiplied by a constraining operator at each iterative step. This enables the constrained algorithm, besides solving the original problem, also to find a solution that incorporates some prior knowledge about the solution. This approach has been useful in image restoration and other image processing situations when a single constraining operator was used. In the field of image reconstruction from projections a priori information about the original image, such as smoothness or that it belongs to a certain closed convex set, may be used to improve the reconstruction quality. We study here constraining of iterative processes by a family of operators rather than by a single operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleyner, A., Censor, Y.: Best approximation to common fixed points of a semigroup of nonexpansive operators. J. Nonlinear Convex Anal. 6, 137–151 (2005)

    MATH  MathSciNet  Google Scholar 

  2. Bauschke, H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202, 150–159 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauschke, H., Borwein, J.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bauschke, H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  5. Ben-Israel, A., Greville, T.: Generalized Inverses: Theory and Applications, 2nd edn. Springer-Verlag, New York (2003)

    Google Scholar 

  6. Björk, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  7. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in mathematics 2057. Springer-Verlag, Berlin, Heidelberg (2012)

    Google Scholar 

  9. Chaux, C., Pesquet, J.C., Pustelnik, N.: Nested iterative algorithms for convex constrained image recovery problems. SIAM J. Imaging Sci. 2, 730–762 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Combettes, P.L.: Fejér-monotonicity in convex optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization 2, pp 106–114. Kluwer, Boston (2001)

    Google Scholar 

  11. De Pierro, A.R., Iusem, A.: On the asymptotic behavior of some alternate smoothing series expansion iterative methods. Linear Algebra Appl. 130, 3–24 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eicke, B.: Iteration methods for convexly constrained ill-posed problems in Hilbert space. Numer. Funct. Anal. Optim. 13, 413–429 (2007)

    Article  MathSciNet  Google Scholar 

  13. Elsner, L., Koltracht, I., Neumann, M.: Convergence of sequential and asynchronous nonlinear paracontractions. Numer. Math. 62, 305–319 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Herman, G.T.: The Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd edn. Springer-Verlag, London (2009)

    Book  Google Scholar 

  15. Herman, G.T., Lent, A.: Iterative reconstruction algorithms. Comput. Biol. Med. 6, 273–294 (1976)

    Article  Google Scholar 

  16. Hirstoaga, S.A.: Iterative selection methods for common fixed point problems. J. Math. Anal. Appl. 324, 1020–1035 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1990)

    MATH  Google Scholar 

  18. Katsaggelos, A., Biemond, J., Mersereau, R., Schafer, R.: A general formulation of constrained iterative restoration algorithms. IEEE Int. Conf. on Acoustics, Speech, and Signal Process., ICASSP ’85 10, pp 700–703 (1985)

  19. Katsaggelos, A.K., Biemond, J., Schafer, R.W., Mersereau, R.M.: A regularized iterative image restoration algorithm. IEEE Trans. Signal Process 39, 914–929 (1991)

    Article  Google Scholar 

  20. Kawata, S., Nalcioglu, O.: Constrained iterative reconstruction by the conjugate gradient method. IEEE Trans. Med. Imaging 4, 65–71 (1985)

    Article  Google Scholar 

  21. Kiwiel, K.C., Łopuch, B.: Surrogate projection methods for finding fixed points of firmly nonexpansive mappings. SIAM J. Optim. 7, 1084–1102 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Koltracht, I., Lancaster, P.: Constraining strategies for linear iterative processes. IMA J. Numer. Anal. 10, 555–567 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Landweber, L.: An iterative formula for Fredholm integral equations of the first kind. Amer. J. Math. 73, 615–624 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nicola, A., Petra, S., Popa, C., Schnörr, C.: On a general extending and constraining procedure for linear iterative methods. Int. J. Comput. Math. 89, 231–253 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  26. Pantelimon, I., Popa, C.: Constraining by a family of strictly nonexpansive idempotent functions with applications in image reconstruction. BIT 53, 527–544 (2013)

    MATH  MathSciNet  Google Scholar 

  27. Petra, S., Schnörr, C.: TomoPIV meets compressed sensing. Pure Math. Appl. 20, 49–76 (2009)

    MATH  Google Scholar 

  28. Popa, C.: Projection algorithms—classical results and developments. Applications to image reconstruction. Lambert Academic Publishing—AV Akademikerverlag GmbH & Co. KG, Saarbrücken (2012)

    Google Scholar 

  29. Popa, C.: Extended and constrained diagonal weighting algorithm with application to inverse problems in image reconstruction. Inverse Probl. 065004, 26 (2010)

    Google Scholar 

  30. Schafer, R.W., Mersereau, R.M., Richards, M.A.: Constrained iterative restoration algorithms. Proc. IEEE 69, 432–450 (1981)

    Article  Google Scholar 

  31. Simmons, G.F.: Introduction to Topology and Modern Analysis. McGraw-Hill Book Company, New York (1963)

    MATH  Google Scholar 

  32. Tanabe, K.: Projection method for solving a singular system of linear equations and its applications. Numer. Math. 17, 203–214 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  33. Youla, D.C., Webb, H.: Image restoration by the method of convex projections: Part 1–Theory. IEEE Trans. Med. Imaging 1, 81–94 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Popa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Censor, Y., Pantelimon, I. & Popa, C. Family constraining of iterative algorithms. Numer Algor 66, 323–338 (2014). https://doi.org/10.1007/s11075-013-9736-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9736-5

Keywords

Mathematics Subject Classifications (2010)

Navigation