Skip to main content
Log in

Some modifications of the quasilinearization method with higher-order convergence for solving nonlinear BVPs

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, modifications of the quasilinearization method with higher-order convergence for solving nonlinear differential equations are constructed. A general technique for systematically obtaining iteration schemes of order m ( > 2) for finding solutions of highly nonlinear differential equations is developed. The proposed iterative schemes have convergence rates of cubic, quartic and quintic orders. These schemes were further applied to bifurcation problems and to obtain critical parameter values for the existence and uniqueness of solutions. The accuracy and validity of the new schemes is tested by finding accurate solutions of the one-dimensional Bratu and Frank-Kamenetzkii equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chun, C.: Iterative methods: improving Newton’s method by the decomposition method. Comput. Math. Appl. 50, 1559–1568 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fang, L., He, G.: Some modifications of Newton’s method with higher-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 228, 296–303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Frontini, M., Sormani, E.: Some variant of Newtons method with third-order convergence. Appl. Math. Comput. 140, 419–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frontini, M., Sormani, E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations. Appl. Math. Comput. 149, 771–782 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kou, J.: The improvements of modified Newton’s method. Appl. Math. Comput. 189, 602–609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Peng, W., Danfu, H.: A family of iterative methods with higher-order convergence. Appl. Math. Comput. 182(1), 474–477 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adomian, G.: A review of the decomposition method and some recent results for nonlinear equation. Math. Comput. Model. 13(7), 17–43 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Adomian, G., Rach, R.: Noise terms in decomposition series solution. Comput. Math. Appl 24(11), 61–64 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer, Boston (1994)

    Book  MATH  Google Scholar 

  10. Bellman, R.E., Kalaba, R.E.: Quasilinearization and Nonlinear Boundary-Value Problems. Elsevier, New York (1965)

    MATH  Google Scholar 

  11. Krivec, R., Mandelzweig, V.B.: Numerical investigation of quasilinearization method in quantum mechanics. Comput. Phys. Commun. 138, 69–79 (2001)

    Article  MATH  Google Scholar 

  12. Mandelzweig, V.B.: Quasilinearization method and its verification on exactly solvable models in quantum mechanics. J. Math. Phys. 40(12), 6266–6291 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mandelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141, 268–281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mandelzweig, V.B.: Quasilinearization method: nonperturbative approach to physical problems. Phys. At. Nucl. 68(7), 1227–1258 (2005)

    Article  Google Scholar 

  15. Amore, P., Fernández, F.M.: The Virial Theorem for Nonlinear Problems. arXiv: 0904.3858v2 [math-ph] (2009)

  16. Boyd, J.P.: Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation. Appl. Math. Comput. 142, 189–200 (2003)

    Article  MathSciNet  Google Scholar 

  17. Boyd, J.P.: One-point pseudospectral collocation for the one-dimensional Bratu equation. Appl. Math. Comput. 217, 5553–5565 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chan, T.F.C., Keller, H.B.: Arc-length amd multi-grid techniques for nonlinear elliptic eigenvalue problems. SIAM J. Sci. Stat. Comput. 3, 173–194 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hassan, I.H., Ertürk, V.S.: Applying differential transformation method to the one-dimensional planar Bratu problem. Int. J. Contemp. Math. Sci. 2, 1493–1504 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Makinde, O.D., Osalusi, E.: Exothermic explosions in symmetric geometries—an exploitation of perturbation technique. Rom. J. Phys. 50, 621–625 (2005)

    Google Scholar 

  21. Vázquez-Espí, C., Linán, A.: The effect of square corners on the ignition of solids. SIAM J. Appl. Math. 53(6), 1567–1590 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Bratu-type equations. Appl. Math. Comput. 166, 652–663 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harley, C., Momoniat, E.: Efficient boundary value problem solution for a Lane-Emden equation. Math. Comput. Appl. 15(4), 613–620 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Frank-Kamenetzkii, D.A.: Diffusion and Heat Transfer in Chemical Kinetics. Plenum Press, New York (1969)

    Google Scholar 

  25. Kubíček, M., Hlavačék, V.: Numerical Solution of Nonlinear Boundary Value Problems with Applications. Prentice-Hall, Englewood Cliffs (1983)

    Google Scholar 

  26. Wazwaz, A.: A new algorithm for solving singular initial value problems in the second-order differential equations. Appl. Math. Comput. 128, 45–57 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Emden–Fowler equation. Appl. Math. Comput. 161, 543–560 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  29. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  30. Li, S., Liao, S.J.: An analytic approach to solve multiple solutions of a strongly nonlinear problem. Appl. Math. Comput. 169, 854–865 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Abbaoui, K., Cherruault, Y., Seng, V.: Practical formulae for the calculus of multivariable Adomian polynomials. Math. Comput. Model. 22(1), 89–93 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sanderson, B.G.: Order and resolution for computation ocean dynamics. J. Phys. Oceanogr. 28, 1271–1286 (1998)

    Article  Google Scholar 

  33. Winther, N.G., Morel, Y.G., Evensen, G.: Efficiency of higher order numerical schemes for momentum advection. J. Mar. Syst. 67, 31–46 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Precious Sibanda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motsa, S.S., Sibanda, P. Some modifications of the quasilinearization method with higher-order convergence for solving nonlinear BVPs. Numer Algor 63, 399–417 (2013). https://doi.org/10.1007/s11075-012-9629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9629-z

Keywords

Navigation