Skip to main content
Log in

New higher-order methods for the simultaneous inclusion of polynomial zeros

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Higher-order methods for the simultaneous inclusion of complex zeros of algebraic polynomials are presented in parallel (total-step) and serial (single-step) versions. If the multiplicities of each zeros are given in advance, the proposed methods can be extended for multiple zeros using appropriate corrections. These methods are constructed on the basis of the zero-relation of Gargantini’s type, the inclusion isotonicity property and suitable corrections that appear in two-point methods of the fourth order for solving nonlinear equations. It is proved that the order of convergence of the proposed methods is at least six. The computational efficiency of the new methods is very high since the acceleration of convergence order from 3 (basic methods) to 6 (new methods) is attained using only n polynomial evaluations per iteration. Computational efficiency of the considered methods is studied in detail and two numerical examples are given to demonstrate the convergence behavior of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic, New York (1983)

    MATH  Google Scholar 

  2. Brent, R.P.: Some efficient algorithms for solving systems of nonlinear equations. SIAM J. Numer. Anal. 10, 327–344 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brent, R.P.: Multi-precision zero-finding methods and the complexity of elementary function evaluation. In: Traub, J.F. (ed.) Analytic Computational Complexity, pp. 151–176. Academic, New York (1975) (Reprinted with minor corrections in 1999)

    Google Scholar 

  4. Brent, R., Zimmermann, P.: Modern Computer Arithmetic. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  5. Carstensen, C.: Anwendungen von Begleitmatrizen. Z. Angew. Math. Mech. 71, 809–812 (1991)

    MathSciNet  Google Scholar 

  6. Carstensen, C., Petković, M.S.: An improvement of Gargantini’s simultaneous inclusion method for polynomial roots by Schroeder’s correction. Appl. Numer. Math. 13, 453–468 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33, 1–15 (2007)

    Article  Google Scholar 

  8. Fujimoto, J., Ishikawa, T., Perret-Gallix, D.: High Precision Numerical Computations. Technical report, ACCP-N-1 (2005)

  9. Gargantini, I.: Further application of circular arithmetic: Schröder-like algorithms with error bound for finding zeros of polynomials. SIAM J. Numer. Anal. 15, 497–510 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gargantini, I., Henrici, P.: Circular arithmetic and the determination of polynomial zeros. Numer. Math. 18, 305–320 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Granlund, T.: GNU MP; The GNU Multiple Precision Arithmetic Library, Edition 5.0.0 (2010)

  12. Herceg, \(\mbox{\raise0.3ex\hbox{-}\kern-0.4em D}\).D.: Computer Implemention and Interpretation of Iterative Methods for Solving Equations. Master thesis, University of Novi Sad, Novi Sad (1997)

  13. Herzberger, J., Metzner, L.: On the Q-order and R-order of convergence for coupled sequences arising in iterative numerical processes. In: Alefeld, G., Herzberger, J. (eds.) Numerical Methods and Error Bounds Mathematical Research, vol. 89, pp. 120–131. Akademie, Berlin (1996)

    Google Scholar 

  14. Kravanja, P.: On Computing Zeros of Analytic Functions and Related Problems in Structured Numerical Linear Algebra. Ph.D. thesis, Katholieke Universiteit Leuven, Lueven (1999)

  15. Kravanja, P.: A modification of Newton’s method for analytic mappings having multiple zeros. Comput. 62, 129–145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. McNamee, J.M.: Numerical Methods for Roots of Polynomials, Part I. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  18. Neumaier, A.: An existence test for root clusters and multiple roots. Z. Angew. Math. Mech. 68, 256–257 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Niu, X.M., Sakurai, T.: A method for finding the zeros of polynomials using a companion matrix. Jpn. J. Ind. Appl. Math. 20, 239-256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ortega, J.M., Rheiboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York (1970)

    MATH  Google Scholar 

  21. Petković, M.S.: On a generalization of the root iterations for polynomial complex zeros in circular interval arithmetic. Computing 27, 37–55 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Petković, M.S.: Iterative Methods for Simultaneous Inclusion of Polynomial Zeros. Springer, Berlin (1989)

    MATH  Google Scholar 

  23. Petković, M.S.: On the Halley-like algorithms for the simultaneous approximation of polynomial complex zeros. SIAM J. Numer. Anal. 26, 740–763 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Petković, M.S.: The self-validated method for polynomial zeros of high efficiency. J. Comput. Appl. Math. 233, 1175–1186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Petković, M.S., Carstensen, C.: On some improved inclusion methods for polynomial roots with Weierstrass’ correction. Comput. Math. Appl. 25, 59–67 (1993)

    Article  MATH  Google Scholar 

  26. Petković, M.S., Carstensen, C., Trajković, M.: Weierstrass’ formula and zero-finding methods. Numer. Math. 69, 353–372 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Petković, M.S., Milošević, D.: Improved Halley-like methods for the inclusion of polynomial zeros. Appl. Math. Comput. 169, 417–436 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Petković, M.S., Milošević, D.M.: On a new family of simultaneous methods with corrections for the inclusion of polynomial zeros. Int. J. Comput. Math. 83, 299–317 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Petković, M.S., Petković, L.D.: Complex Interval Arithmetic and its Applications. Wiley, Berlin (1998)

    MATH  Google Scholar 

  30. Schönhage, A., Strassen, V.: Schnelle multiplication grosser Zahlen. Computing 7, 281–292 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miodrag S. Petković.

Additional information

This research was supported by the Serbian Ministry of Science under grant number 174022.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petković, M.S., Milošević, M.R. & Milošević, D.M. New higher-order methods for the simultaneous inclusion of polynomial zeros. Numer Algor 58, 179–201 (2011). https://doi.org/10.1007/s11075-011-9452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9452-y

Keywords

AMS 2000 Subject Classifications

Navigation