Skip to main content
Log in

A generalization of Euler’s constant

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The purpose of this paper is to evaluate the limit γ(a) of the sequence \(\left(\frac{1}{a}+\frac{1}{a+1}+\cdots+\frac{1}{a+n-1}-\ln\frac{a+n-1}{a}\right)_{n\in\mathbb{N}}\), where a ∈ (0, + ∞ ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzer, H.: Inequalities for the gamma and polygamma functions. Abh. Math. Semin. Univ. Hamb. 68, 363–372 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. DeTemple, D.W.: A quicker convergence to Euler’s constant. Am. Math. Mon. 100(5), 468–470 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Elsner, C.: On a sequence transformation with integral coefficients for Euler’s constant. Proc. Am. Math. Soc. 123(5), 1537–1541 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Elsner, C.: On a sequence transformation with integral coefficients for Euler’s constant, II. J. Number Theory 124, 442–453 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hessami Pilehrood, Kh., Hessami Pilehrood, T.: Arithmetical properties of some series with logarithmic coefficients. Math. Z. 255, 117–131 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Karatsuba, E.A.: On the computation of the Euler constant γ. Numer. Algorithms 24, 83–97 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Knopp, K.: Theory and Application of Infinite Series. Blackie, London (1951)

    MATH  Google Scholar 

  8. Lehmer, D.H.: Euler constants for arithmetical progressions. Acta Arith. 27, 125–142 (1975)

    MATH  MathSciNet  Google Scholar 

  9. Nedelcu, I.: Problem 21753. Gaz. Mat. Ser. B 94(4), 136 (1989)

    Google Scholar 

  10. Rippon, P.J.: Convergence with pictures. Am. Math. Mon. 93(6), 476–478 (1986)

    Article  MathSciNet  Google Scholar 

  11. Rizzoli, I.: O teoremă Stolz–Cesaro (A Stolz–Cesaro theorem). Gaz. Mat. Ser. B 95(10-11-12), 281–284 (1990)

    MATH  Google Scholar 

  12. Ser, J.: Questions 5561, 5562, L’Intermédiaire des Mathématiciens. Série 2, 4, 126–127 (1925)

    Google Scholar 

  13. Tasaka, T.: Note on the generalized Euler constants. Math. J. Okayama Univ. 36, 29–34 (1994)

    MATH  MathSciNet  Google Scholar 

  14. Tims, S.R., Tyrrell, J.A.: Approximate evaluation of Euler’s constant. Math. Gaz. 55(391), 65–67 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tóth, L.: Problem E3432. Am. Math. Mon. 98(3), 264 (1991)

    Article  Google Scholar 

  16. Tóth, L.: Problem E3432 (Solution). Am. Math. Mon. 99(7), 684–685 (1992)

    Google Scholar 

  17. Vernescu, A.: Ordinul de convergenţă al şirului de definiţie al constantei lui Euler (The convergence order of the definition sequence of Euler’s constant). Gaz. Mat. Ser. B 88 (10–11), 380–381 (1983)

    Google Scholar 

  18. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  19. Yingying, Li: On Euler’s constant—calculating sums by integrals. Am. Math. Mon. 109(9), 845–850 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Young, R.M.: Euler’s constant. Math. Gaz. 75(472), 187–190 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Sîntămărian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sîntămărian, A. A generalization of Euler’s constant. Numer Algor 46, 141–151 (2007). https://doi.org/10.1007/s11075-007-9132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9132-0

Keywords

Mathematics Subject Classifications (2000)

Navigation