Skip to main content
Log in

An approximate Newton method for non-smooth equations with finite max functions

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

A new version of finite difference approximation of the generalized Jacobian for a finite max function is constructed. Numerical results are reported for the generalized Newton methods using this approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen, Superlinear convergence of smoothing quasi-Newton methods for non-smooth equations, J. Comput. Appl. Math. 80 (1997) 105–126.

    Article  MATH  MathSciNet  Google Scholar 

  2. X. Chen, L. Qi and D. Sun, Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities, Math. Comput. 67 (1998) 519–540.

    Article  MATH  MathSciNet  Google Scholar 

  3. F.H. Clarke, Generalized gradients and applications, Trans. Am. Math. Soc. 205 (1975) 247–262.

    Article  MATH  Google Scholar 

  4. F.H. Clarke, Optimization and Non-smooth Analysis (John Wiley and Sons, New York, 1983).

    Google Scholar 

  5. Y. Gao, Newton methods for solving two classes of non-smooth equations, Appl. Math. 46 (2001) 215–229.

    Article  MATH  MathSciNet  Google Scholar 

  6. S.P. Han, J.-S. Pang, N. Rangaraj, Globally convergent Newton methods for non-smooth equations, Math. Oper. Res. 1 (1992) 586–607.

    Article  MathSciNet  Google Scholar 

  7. P.T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problem: A survey of theory, algorithms and applications, Math. Program. 48 (1990) 161–220.

    Article  MATH  MathSciNet  Google Scholar 

  8. P.T. Harker and B. Xiao, Newton's method for the nonlinear complementarity problem: a B-differentiable equation approach, Math. Program. 48 (1990) 339–357.

    Article  MATH  MathSciNet  Google Scholar 

  9. J.-B. Hiriart-Urruty, Refinements of necessary optimality conditions in nondifferentiable programming I, Appl. Math. Optim. 5 (1979) 63–82.

    Article  MATH  MathSciNet  Google Scholar 

  10. C.M. Ip and J. Kyparysis, Local convergence of quasi-Newton methods for B-differentiable equations, Math. Program. 58 (1992) 71–89.

    Article  Google Scholar 

  11. H. Jiang and L. Qi, A new non-smooth equations approach to nonlinear complementarity problems, SIAM J. Control Optim. 35 (1997) 178–193.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Kojima and S. Shindo, Extensions of Newton and quasi-Newton methods to systems of PC1-Equations, J. Oper. Res. Soc. Jpn. 29 (1986) 352–374.

    MATH  MathSciNet  Google Scholar 

  13. B. Kummer, Newton's method based on generalized derivatives for non-smooth functions: convergence analysis, in: Advances in Optimization, eds. W. Oettli et al. (Springer, 1992) pp. 171–194.

  14. M.M. Mäkelä and P. Neittaanmäki, Non-smooth Optimization: Analysis and Algorithms with Applications to Optimal Control (World Scientific, Singapore, 1992).

    Google Scholar 

  15. R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim. 15 (1977) 959–972.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic, New York, 1970).

    MATH  Google Scholar 

  17. J.-S. Pang and L. Qi, Non-smooth equations: Motivation and algorithms, SIAM J. Optim. 3 (1993) 443–465.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.-S. Pang and D. Ralph, Piecewise smoothness, local invertibility, and parametric analysis of normal maps, Math. Oper. Res. 21 (1996) 401–426.

    MATH  MathSciNet  Google Scholar 

  19. L. Qi and D. Sun, Non-smooth and smoothing methods for nonlinear complementary problems and variational inequalities, in: Encyclopedia of Optimization Vol. 4, eds. C.A. Floudas and P.M. Pardalos (Kluwer, 2001) pp. 100–104.

  20. L. Qi and J. Sun, A non-smooth version of Newton's method, Math. Program. 58 (1993) 353–367.

    Article  MathSciNet  Google Scholar 

  21. M. Śmietański, A Note on Approximate Newton Methods for Non-smooth Equations, preprint, Faculty of Mathematics, University of Łódź, Poland (2000).

  22. H. Xu and W. Chang, Approximate Newton methods for non-smooth equations, J. Optim. Theory Appl. 93 (1997) 373–394.

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Xu and B.M. Glover, New version of Newton's method for non-smooth equations, J. Optim. Theory Appl. 93 (1997) 395–415.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek J. Śmietański.

Additional information

Communicated by Xiaojun Chen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Śmietański, M.J. An approximate Newton method for non-smooth equations with finite max functions. Numer Algor 41, 219–238 (2006). https://doi.org/10.1007/s11075-005-9009-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-005-9009-z

Keywords

AMS subject classification

Navigation