Skip to main content
Log in

An Algorithm for Computing Fundamental Solutions of Difference Operators

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We propose an FFT-based algorithm for computing fundamental solutions of difference operators with constant coefficients. Our main contribution is to handle cases where the symbol has zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Agarwal, Difference Equations and Inequalities, 2nd ed. (Dekker, New York, 2000).

    Google Scholar 

  2. H. Brandén and P. Sundqvist, Preconditioned based on fundamental solutions, Tech. Rep. 2000–032, Dept. of Information Technology, Uppsala Univ., Uppsala, Sweden (2000).

    Google Scholar 

  3. D.J. Cartwright, Underlying Principles of the Boundary Element Method (WIT Press, Southampton, 2001).

    Google Scholar 

  4. R.H. Chan and K.-P. Ng, Toeplitz preconditioners for Hermitian Toeplitz systems, Linear Algebra Appl. 190 (1993) 181–208.

    Google Scholar 

  5. C.S. Chen, M.D. Marcozzi and S. Choi, The method of fundamental solutions and compactly supported radial basis functions: A meshless approach to 3d problems, Int. Ser. Adv. Bound. Elem. 6 (1999) 561–570.

    Google Scholar 

  6. R.E. Cline and R.J. Plemmons, l 2-solutions to underdetermined linear systems, SIAM Rev. 18 (1976) 92–106.

    Google Scholar 

  7. C. De Boor, K. Höllig and S. Riemenschneider, Fundamental solutions for multivariate difference equations, Amer. J. Math. 111 (1989) 403–415.

    Google Scholar 

  8. A. George, M.T. Heath and E. Ng, Solution of sparse underdetermined systems of linear equations, SIAM J. Sci. Statist. Comput. 5 (1984) 988–997.

    Google Scholar 

  9. G.H. Golub and C.F. van Loan, Matrix Computations, 2nd ed. (The Johns Hopkins University Press, Baltimore, 1989).

    Google Scholar 

  10. U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, 2nd ed. (Chelsea, New York, 1984).

    Google Scholar 

  11. M. Hanke and J.G. Nagy, Toeplitz approximate inverse preconditioners for banded Toeplitz matrices, Numer. Algorithms 7 (1994) 183–199.

    Google Scholar 

  12. L. Hörmander, On the division of distributions by polynomials, Ark. Mat. 54 (1958) 555–568.

    Google Scholar 

  13. L. Hörmander, The Analysis of Linear Partial Differential Operators I, 2nd ed. (Springer-Verlag, 1990).

  14. P.K. Kythe, An Introduction to Boundary Element Methods (CRC Press, Boca Raton, FL, 1995).

    Google Scholar 

  15. S.L. Ojasiewicz, Sur le probleme de la division, Studia Math. 18 (1959) 87–136.

    Google Scholar 

  16. C.C. Paige, An error analysis of a method for solving matrix equations, Math. Comp. 27 (1973) 355–359.

    Google Scholar 

  17. A. Poullikkas, A. Karageorghis and G. Georgiou, Methods of fundamental solutions for harmonic and biharmonic boundary value problems, Comput. Mech. 21 (1998) 416–423.

    Google Scholar 

  18. L. Schwarz, Théories des distributions (Hermann, 1950–51).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandén, H., Sundqvist, P. An Algorithm for Computing Fundamental Solutions of Difference Operators. Numer Algor 36, 331–343 (2004). https://doi.org/10.1007/s11075-004-2879-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-004-2879-7

Navigation