Skip to main content
Log in

Rigid spacecraft nonlinear robust \(H_\infty \) attitude controller design under actuator misalignments

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

\(H_\infty \) control is well-known for its robustness performance, but the spacecraft attitude \(H_\infty \) controller design under actuator misalignments and disturbances remains unexplored. In addition, the heavy computational demands prevent the implementation of an \(H_\infty \) controller for nonlinear systems in higher dimensions. To address these challenges, a robust \(H_\infty \) controller is proposed for the rigid spacecraft attitude control problem in the presence of actuator misalignments and disturbances based on the solution of the Hamilton–Jacobi–Isaacs (HJI) partial differential equation (PDE). The \(L_2\)-gain of the closed-loop system is proved to be bounded by a specified disturbance attenuation level. An efficient sparse successive Chebyshev–Galerkin method is also proposed to solve the nonlinear HJI PDE, thus the implementation of the proposed controller is facilitated. It is also proved that the computational cost grows only polynomially with the system dimension. The effectiveness of the proposed robust \(H_\infty \) controller is validated through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data sharing is not appropriate for this research because no datasets were created or analyzed.

References

  1. Cao, L., Xiao, B.: Exponential and resilient control for attitude tracking maneuvering of spacecraft with actuator uncertainties. IEEE/ASME Trans. Mechatron. 24(6), 2531–2540 (2019)

    Article  Google Scholar 

  2. Cao, L., Xiao, B., Golestani, M.: Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty. Nonlinear Dyn. 100(3), 2505–2519 (2020)

    Article  Google Scholar 

  3. Guo, Z., Wang, Z., Li, S.: Global finite-time set stabilization of spacecraft attitude with disturbances using second-order sliding mode control. Nonlinear Dyn. 108(2), 1305–1318 (2022)

    Article  Google Scholar 

  4. Hasan, M.N., Haris, M., Qin, S.: Fault-tolerant spacecraft attitude control: a critical assessment. Prog. Aerosp. Sci. 130, 100806 (2022)

    Article  Google Scholar 

  5. Zhang, C., Ma, G., Sun, Y., Li, C.: Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression. Nonlinear Dyn. 96(3), 1909–1926 (2019)

    Article  Google Scholar 

  6. Wang, Y., Liu, K., Ji, H.: Adaptive robust fault-tolerant control scheme for spacecraft proximity operations under external disturbances and input saturation. Nonlinear Dyn. 108(1), 207–222 (2022)

    Article  Google Scholar 

  7. Shao, X., Hu, Q., Li, D., Shi, Y., Yi, B.: Composite adaptive control for anti-unwinding attitude maneuvers: an exponential stability result without persistent excitation. IEEE Transactions on aerospace and electronic systems, pp. 1-15 (2022)

  8. Shao, X., Hub, Q., Shi, Y., Zhang, Y.: Fault-tolerant control for full-state error constrained attitude tracking of uncertain spacecraft. Automatica 151, 110907 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shao, X., Hu, Q., Zhu, Z.H., Zhang, Y.: Fault-tolerant reduced-attitude control for spacecraft constrained boresight reorientation. J. Guid. Control. Dyn. 45(8), 1481–1495 (2022)

    Article  Google Scholar 

  10. Shao, X., Hu, Q., Shi, Y., Yi, B.: Data-driven immersion and invariance adaptive attitude control for rigid bodies with double-level state constraints. IEEE Trans. Control Syst. Technol. 30(2), 779–794 (2022)

    Article  Google Scholar 

  11. Yoon, H., Tsiotras, P.: Adaptive spacecraft attitude tracking control with actuator uncertainties. J. Astronaut. Sci. 56(2), 251–268 (2008)

    Article  Google Scholar 

  12. Xiao, B., Hu, Q., Wang, D., Poh, E.K.: Attitude tracking control of rigid spacecraft with actuator misalignment and fault. IEEE Trans. Control Syst. Technol. 21(6), 2360–2366 (2013)

    Article  Google Scholar 

  13. Fosbury, A., Nebelecky, C.: Spacecraft actuator alignment estimation. In AIAA Guidance, Navigation, and control conference, 6316 (2009)

  14. Hu, Q., Xiao, B., Wang, D., Poh, E.K.: Attitude control of spacecraft with actuator uncertainty. J. Guid. Control. Dyn. 36(6), 1771–1776 (2013)

    Article  Google Scholar 

  15. Hu, Q., Li, B., Zhang, A.: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment. Nonlinear Dyn. 73(1), 53–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hasan, M.N., Haris, M., Qin, S.: Vibration suppression and fault-tolerant attitude control for flexible spacecraft with actuator faults and malalignments. Aerosp. Sci. Technol. 120, 107290 (2022)

    Article  Google Scholar 

  17. Wang, Z., Li, Y.: Guaranteed cost spacecraft attitude stabilization under actuator misalignments using linear partial differential equations. J. Franklin Inst. 357(10), 6018–6040 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, Z., Li, Y.: Rigid spacecraft robust optimal attitude stabilization under actuator misalignments. Aerosp. Sci. Technol. 105, 105990 (2020)

    Article  Google Scholar 

  19. Yang, H., Hu, Q., Dong, H., Zhao, X.: ADP-based spacecraft attitude control under actuator misalignment and pointing constraints. IEEE Trans. Industr. Electron. 69(9), 9342–9352 (2021)

    Article  Google Scholar 

  20. Bu, X.: Prescribed performance control approaches, applications and challenges: a comprehensive survey. Asian J. Control 25(1), 241–261 (2023)

    Article  Google Scholar 

  21. Shao, X., Hu, Q., Shi, Y.: Adaptive pose control for spacecraft proximity operations with prescribed performance under spatial motion constraints. IEEE Trans. Control Syst. Technol. 29(4), 1405–1419 (2021)

    Article  Google Scholar 

  22. Wei, C., Chen, Q., Liu, J., Yin, Z., Guo, J.: An overview of prescribed performance control and its application to spacecraft attitude system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 235(4), 435–447 (2021)

    Google Scholar 

  23. Yong, K., Chen, M., Shi, Y., Wu, Q.: Flexible performance-based robust control for a class of nonlinear systems with input saturation. Automatica 122, 109268 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, C., Ma, G., Sun, Y., Li, C.: Observer-based prescribed performance attitude control for flexible spacecraft with actuator saturation. ISA Trans. 89, 84–95 (2019)

    Article  Google Scholar 

  25. van der Schaft, A.J.: \(L_2\)-gain analysis of nonlinear systems and nonlinear state feedback \(H_\infty \) control. IEEE Trans. Autom. Control 37(6), 770–784 (1992)

    Article  MATH  Google Scholar 

  26. Wu, S., Chu, W., Ma, X., Radice, G., Wu, Z.: Multi-objective integrated robust \(H_\infty \) control for attitude tracking of a flexible spacecraft. Acta Astronaut. 151, 80–87 (2018)

    Article  Google Scholar 

  27. Huang, Y., Jia, Y.: Nonlinear robust \(H_{\infty }\) control for spacecraft body-fixed hovering around noncooperative target via modified \(\theta -D\) method. IEEE Trans. Aerosp. Electron. Syst. 55(5), 2451–2463 (2019)

  28. Luo, W., Chu, Y.C., Ling, K.V.: H-infinity inverse optimal attitude-tracking control of rigid spacecraft. J. Guid. Control. Dyn. 28(3), 481–494 (2005)

  29. Franzini, G., Innocenti, M.: Nonlinear H-infinity control of relative motion in space via the state-dependent Riccati equations. In 2015 54th IEEE Conference on decision and control (CDC), pp. 3409-3414 (2015)

  30. Beard, R.W.: Successive Galerkin approximation algorithms for nonlinear optimal and robust control. Int. J. Control 71(5), 717–743 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ferreira, H.C., Rocha, P.H., Sales, R.M.: On the convergence of successive Galerkin approximation for nonlinear output feedback \({H}_{\infty }\) control. Nonlinear Dyn. 60(4), 651–660 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tsiotras, P.: Further passivity results for the attitude control problem. IEEE Trans. Autom. Control 43(11), 1597–1600 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. van der Schaft, A. J.: \(L_2\)-Gain and passivity techniques in nonlinear control. Springer (2017)

  34. Wang, Z., Li, Y.: Nonlinear \({H}_{\infty }\) control based on successive Gaussian process regression. IEEE Transactions on circuits and systems II: Express Briefs, pp. 1-5 (2022)

  35. Aliyu, M.D.S.: Nonlinear \({H}_{\infty }\)-control. Hamiltonian Systems and Hamilton-Jacobi Equations, CRC (2011)

    MATH  Google Scholar 

  36. Christian, E., Raff, T., Allgöwer, F.: Dissipation inequalities in systems theory: an introduction and recent results. Invited lectures of the international congress on industrial and applied mathematics. pp. 23-42 (2009)

  37. Abu-Khalaf, M., Lewis, F.L., Huang, J.: Policy iterations on the Hamilton-Jacobi-Isaacs equation for \(H_{\infty }\) state feedback control with input saturation. IEEE Trans. Autom. Control 51(12), 1989–1995 (2006)

  38. Wang, Z., Li, Y.: Nested sparse successive Galerkin approximation for nonlinear optimal control problems. IEEE Control Syst. Lett. 5(2), 511–516 (2020)

    Article  MathSciNet  Google Scholar 

  39. Garcke, J.: Sparse grid tutorial. Mathematical sciences institute, Australian National University, Canberra Australia, 7, (2006)

  40. Judd, K.L., Maliar, L., Maliar, S., Valero, R.: Smolyak method for solving dynamic economic models: lagrange interpolation, anisotropic grid and adaptive domain. J. Econ. Dyn. Control 44, 92–123 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Heiss, F., Winschel, V.: Likelihood approximation by numerical integration on sparse grids. J. Econ. 144(1), 62–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, Z., Li, Y.: Compressed positive quadrature filter. IEEE Trans. Autom. Control 67(7), 3633–3640 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shen, J., Yu, H.: Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems. SIAM J. Sci. Comput. 32(6), 3228–3250 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shen, J., Tang, T., Wang, L. L.: Spectral methods: algorithms, analysis and applications (Vol. 41). Springer Science and Business Media, (2011)

  45. Patterson, T.N.: The optimum addition of points to quadrature formulae. Math. Comput. 22(104), 847–856 (1968)

  46. Laurie, D.: Calculation of Gauss-Kronrod quadrature rules. Math. Comput. 66(219), 1133–1145 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Petras, K.: Smolyak cubature of given polynomial degree with few nodes for increasing dimension. Numer. Math. 93(4), 729–753 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. (2014)

  49. Ye, Y., Tse, E.: An extension of Karmarkar’s projective algorithm for convex quadratic programming. Math. Program. 44(1), 157–179 (1989)

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Simulations and analysis were performed by ZW and YL. The first draft of the manuscript was written by ZW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, Y. Rigid spacecraft nonlinear robust \(H_\infty \) attitude controller design under actuator misalignments. Nonlinear Dyn 111, 15037–15054 (2023). https://doi.org/10.1007/s11071-023-08620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08620-6

Keywords

Navigation