Skip to main content

Advertisement

Log in

Enhanced nonlinear performance of nonlinear energy sink under large harmonic excitation using acoustic black hole effect

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Although the frequency dependence of linear tuned-mass-damper (TMD) is overcome by the nonlinear energy sink (NES), it is sensitive to the input energy. When the structure with NES is subjected to harmonic excitation, a larger or smaller excitation amplitude may deteriorate the performance of the NES. In particular, the large excitation may make the coupled system of NES produce a high closed detached response (CDR). The appearance of CDR means that NES may be completely ineffective. To solve this problem, multiple acoustic black hole (ABH) beams with damping layers at their tip are attached to the mass block of NES to improve NES’s mitigation effect. This novel NES is called ABH-NES in this paper. Its theoretical model is first established using the Gaussian Expansion Element Method (GEEM) and modal approach. Then, the influence of ABH effects and the number of ABH beams on the ABH-NES’s vibration mode are analyzed based on this model. After that, the responses of ABH-NES, NES, and Uniform Beam-NES (UB-NES, using uniform beams to replace the ABH’s in ABH-NES) are compared using time-domain integration, energy method, and harmonic balance method (HBM). The results show that ABH-NES has a better and more robust damping effect, especially under large excitation. The introduction of the ABH beam has two main influences: First, it raises the CDR's excitation threshold by increasing the energy dissipation pathway. Second, it reduces the amplitude of the CDR utilizing the highly damped modes of ABH-NES. Parametric analysis is carried out to discuss the effects of the partial parameters, such as absorber mass, stiffness, damping, ABH-NES’s frequency, on the new absorber. Finally, an experiment is provided to verify the effectiveness of theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author [Y. Tang], upon reasonable request.

References

  1. Zapfe, J.A., Lesieutre, G.A.: Broadband vibration damping using highly distributed tuned mass absorbers. AIAA J. 35(4), 753–755 (1997)

    Google Scholar 

  2. Tributsch, A., Adam, C.: Evaluation and analytical approximation of tuned mass damper performance in an earthquake environment. Smart Struct. Syst. 10(2), 1–25 (2012)

    Google Scholar 

  3. Yingling, A.J., Agrawal, B.N.: Applications of tuned mass dampers to improve performance of large space mirrors. Acta Astronaut. 94(1), 1–13 (2014)

    Google Scholar 

  4. Bian, J., Jing, X.J.: A nonlinear X-shaped structure based tuned mass damper with multi-variable optimization (X-absorber). Commun. Nonlinear Sci. 99, 105829 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Dekemele, K., Torre, P.V., Loccufier, M.: Design, construction and experimental performance of a nonlinear energy sink in mitigating multi-modal vibrations. J. Sound Vib. 473, 115243 (2020)

    Google Scholar 

  6. Roberson, R.E.: Synthesis of a nonlinear dynamic vibration absorber. J. Franklin Inst. 254(3), 205–220 (1952)

    MathSciNet  Google Scholar 

  7. McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non-Linear Mech. 40(6), 891–899 (2005)

    MATH  Google Scholar 

  8. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300, 522–551 (2007)

    Google Scholar 

  9. Zang, J., Zhang, Y.W.: Responses and bifurcations of a structure with a lever-type nonlinear energy sink. Nonlinear Dyn. 98, 889–906 (2019)

    Google Scholar 

  10. Wang, G.X., Ding, H., Chen, L.Q.: Performance evaluation and design criterion of a nonlinear energy sink. Mech. Syst. Signal Process. 169, 108770 (2022)

    Google Scholar 

  11. Yao, H.L., Cao, Y.B., Wang, Y.W., Wen, B.C.: A tri-stable nonlinear energy sink with piecewise stiffness. J. Sound Vib. 463, 114971 (2019)

    Google Scholar 

  12. Geng, X.F., Ding, H.: Theoretical and experimental study of an enhanced nonlinear energy sink. Nonlinear Dyn. 104, 3269–3291 (2021)

    Google Scholar 

  13. Wang, J.J., Zhang, C., Li, H.B., Liu, Z.B.: Experimental and numerical studies of a novel track bistable nonlinear energy sink with improved energy robustness for structural response mitigation. Eng. Struct. 237, 112184 (2021)

    Google Scholar 

  14. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Physica D 237, 1719–1733 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Zang, J., Yuan, T.C., Lu, Z.Q., Zhang, Y.W., Ding, H., Chen, L.Q.: A lever-type nonlinear energy sink. J. Sound Vib. 437, 119–134 (2018)

    Google Scholar 

  16. Zang, J., Cao, R.Q., Zhang, Y.W.: Steady-state response of a viscoelastic beam with asymmetric elastic supports coupled to a lever-type nonlinear energy sink. Nonlinear Dyn. 105, 1327–1341 (2021)

    Google Scholar 

  17. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324, 916–939 (2009)

    Google Scholar 

  18. Liu, Y., Mojahed, A., Bergman, L.A., Vakakis, A.F.: A new way to introduce geometrically nonlinear stiffness and damping with an application to vibration suppression. Nonlinear Dyn. 96, 1819–1845 (2019)

    MATH  Google Scholar 

  19. Chen, J.E., Sun, M., Hu, W.H., Zhang, J.H., Wei, Z.C.: Performance of non-smooth nonlinear energy sink with descending stiffness. Nonlinear Dyn. 100, 255–267 (2020)

    Google Scholar 

  20. Zhang, Y.F., Kong, X.R., Yue, C.F., Xiong, H.: Dynamic analysis of 1-dof and 2-dof nonlinear energy sink with geometrically nonlinear damping and combined stiffness. Nonlinear Dyn. 105, 167–190 (2021)

    Google Scholar 

  21. Mironov, M.A.: Propagation of flexural waves in a plate whose thickness decreases smoothly to zero in a finite interval. Sov. Phys. Acoust. 34(3), 318–319 (1988)

    Google Scholar 

  22. Krylov, V.V.: New type of vibration dampers utilizing the effect of acoustic black holes. Acta Acust. United Acust. 90(5), 368–388 (2004)

    Google Scholar 

  23. Krylov, V.V., Winward, R.E.T.B.: Experimental investigation of the acoustic black hole effect of flexural waves in tapered plates. J. Sound Vib. 300(12), 43–49 (2007)

    Google Scholar 

  24. Bowyer, E.P., Krylov, V.V.: Damping of flexural vibrations in turbofan blades using the acoustic black hole effect. Appl. Acoust. 76, 359–365 (2014)

    Google Scholar 

  25. Wang, Y.H., Du, J.T., Cheng, L.: Power flow and structural intensity analyses of acoustic black hole beams. Mech. Syst. Signal Process. 131, 538–553 (2019)

    Google Scholar 

  26. Zhou, T., Cheng, L.: A resonant beam damper tailored with Acoustic Black Hole features for broadband vibration reduction. J. Sound Vib. 430, 174–184 (2018)

    Google Scholar 

  27. Ji, H.L., Wang, N., Zhang, C., Wang, X.D., Cheng, L., Qiu, J.H.: A vibration absorber based on two-dimensional acoustic black holes. J. Sound Vib. 500, 116024 (2021)

    Google Scholar 

  28. Park, S., Lee, J.Y., Jeon, W.: Vibration damping of plates using waveguide absorbers based on spiral acoustic black holes. J. Sound Vib. 522, 116685 (2022)

    Google Scholar 

  29. Lee, J.Y., Jeon, W.J.: Wave-based analysis of the cut-on frequency of curved acoustic black holes. J Sound Vib. 492, 115731 (2021)

    Google Scholar 

  30. Denis, V., Pelat, A., Touze, C., Gautier, F.: Improvement of the acoustic black hole effect by using energy transfer due to geometric nonlinearity. Int. J. Non-Linear Mech. 94, 134–145 (2017)

    Google Scholar 

  31. Li, H.Q., Touze, C., Pelat, A., Gautier, F., Kong, X.R.: A vibro-impact acoustic black hole for passive damping of flexural beam vibrations. J. Sound Vib. 450, 28–46 (2019)

    Google Scholar 

  32. Zhang, L.L., Kerschen, G., Cheng, L.: Nonlinear features and energy transfer in an Acoustic Black Hole beam through intentional electromechanical coupling. Mech. Syst. Signal Process 177, 109244 (2022)

    Google Scholar 

  33. Deng, J., Zheng, L., Zeng, P.Y., Zou, Y.F., Guasch, O.: Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams. Mech. Syst. Signal Process. 118, 461–476 (2019)

    Google Scholar 

  34. Deng, J., Zheng, L., Guasch, O., Wu, H., Zeng, P.Y., Zou, Y.F.: Gaussian expansion for the vibration analysis of plates with multiple acoustic black holes indentations. Mech. Syst. Signal Process. 131, 317–334 (2019)

    Google Scholar 

  35. Deng, J., Guasch, O., Maxit, L., Zheng, L.: Vibration of cylindrical shells with embedded annular acoustic black holes using the Rayleigh-Ritz method with Gaussian basis functions. Mech. Syst. Signal Process. 150, 107225 (2021)

    Google Scholar 

  36. Li, W.L.: Free vibrations of beams with general boundary conditions. J. Sound Vib. 237(4), 709–725 (2000)

    MathSciNet  Google Scholar 

  37. Li, W.L., Zhang, X.F., Du, J.T., Liu, Z.G.: An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports. J. Sound Vib. 321(1–2), 254–269 (2009)

    Google Scholar 

  38. Wang, T., Tang, Y., Ding, Q.: Gaussian expansion element method of the new dynamic modeling technique in non-uniform and variable cross-section structures. Appl. Math. Model 116, 122–146 (2022)

    MATH  Google Scholar 

  39. Ducceschi, M., Touze, C.: Modal approach for nonlinear vibrations of damped impacted plates: application to sound synthesis of gongs and cymbals. J. Sound Vib. 344, 313–331 (2015)

    Google Scholar 

  40. Tang, Y., Ma, Z.S., Ding, Q., Wang, T.: Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: a nano-structure analysis. Compos. Struct. 264, 113746 (2021)

    Google Scholar 

  41. Li, H.Q., Li, A., Zhang, Y.F.: Importance of gravity and friction on the targeted energy transfer of vibro-impact nonlinear energy sink. Int. J. Impact Eng. 157, 104001 (2021)

    Google Scholar 

  42. Sert, O., Cigeroglu, E.: A novel two-step pseudo-response based adaptive harmonic balance method for dynamic analysis of nonlinear structures. Mech. Syst. Signal Process. 130, 610–631 (2019)

    Google Scholar 

  43. Lu, Z.Q., Liu, W.H., Ding, H., Chen, L.Q.: Energy transfer of an axially loaded beam with a parallel-coupled nonlinear vibration isolator. J. Vib. Acoust. 144(5), 051009 (2022)

    Google Scholar 

  44. Lu, Z.Q., Chen, J., Ding, H., Chen, L.Q.: Energy harvesting of a fluid-conveying piezoelectric pipe. Appl. Math. Model 107, 165–181 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Wang, T., Tang, Y., Yang, T.Z., Ma, Z.S., Ding, Q.: Bistable enhanced passive absorber based on integration of nonlinear energy sink with acoustic black hole beam. J. Sound Vib. 544, 117409 (2023)

    Google Scholar 

  46. Hsu, C.S.: On approximating a general linear periodic system. J. Math. Anal. Appl. 45, 234–251 (1974)

    MathSciNet  MATH  Google Scholar 

  47. Yan, B., Yu, N., Ma, H.Y., Wu, C.Y.: A theory for bistable vibration isolators. Mech. Syst. Signal Pr. 167, 108507 (2022)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11902001, 12132010, 12072221), and China Postdoctoral Science Foundation (No. 2018M641643).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Harmonic balance method

Since the nonlinear stiffness of the coupled system is cubic-type, its periodic solution xd and the nonlinear force Fdn are mainly composed of odd harmonics and can be assumed as [9, 42,43,44]

$$ {\varvec{x}}_{d} = \sum\limits_{k = 1}^{{N_{k} }} {{\varvec{a}}_{2k - 1} \cos \left( {2k - 1} \right)\omega_{d} \tau + {\varvec{b}}_{2k - 1} \sin \left( {2k - 1} \right)\omega_{d} \tau } $$
(A.1)
$$ {\varvec{F}}_{dn} = \left( {\sum\limits_{k = 1}^{{N_{k} }} {c_{2k - 1} \cos \left( {2k - 1} \right)\omega_{d} \tau + d_{2k - 1} \sin \left( {2k - 1} \right)\omega_{d} \tau } } \right){\varvec{f}}_{n} $$
(A.2)

where a2k−1 and b2k−1 are the harmonic coefficients of the periodic solution. And they also are n + 1 dimensional vectors. The Nk determines the order of the harmonics and is set as 3 in this paper. The c2k−1 and d2k−1 denote the harmonic coefficients of nonlinear force and are scalar.

Substituting Eqs. (A.1) and (A.2) into Eq. (26) and performing harmonic balance, a set of algebraic equations can be obtained

$$ \begin{array}{c} {\varvec{H}}\left( {\omega_{d} ,{\varvec{a}}_{1} ,{\varvec{b}}_{1} , \cdots ,c_{1} ,d_{1} , \cdots } \right) = {\mathbf{0}} \hfill \\ = \left[ {\begin{array}{*{20}c} {\left( {{\varvec{K}}_{d} - \omega_{d}^{2} {\varvec{M}}_{d} } \right){\varvec{a}}_{1} + \omega_{d} {\varvec{C}}_{d} {\varvec{b}}_{1} + c_{1} {\varvec{f}}_{n} - {\varvec{F}}_{d} } \\ {\left( {{\varvec{K}}_{d} - \omega_{d}^{2} {\varvec{M}}_{d} } \right){\varvec{b}}_{1} - \omega_{d} {\varvec{C}}_{d} {\varvec{a}}_{1} + d_{1} {\varvec{f}}_{n} } \\ \vdots \\ {\left( {{\varvec{K}}_{d} - \left( {2k - 1} \right)^{2} \omega_{d}^{2} {\varvec{M}}_{d} } \right){\varvec{a}}_{2k - 1} + \left( {2k - 1} \right)\omega_{d} {\varvec{C}}_{d} {\varvec{b}}_{2k - 1} + c_{2k - 1} {\varvec{f}}_{n} } \\ {\left( {{\varvec{K}}_{d} - \left( {2k - 1} \right)^{2} \omega_{d}^{2} {\varvec{M}}_{d} } \right){\varvec{b}}_{2k - 1} - \left( {2k - 1} \right)\omega_{d} {\varvec{C}}_{d} {\varvec{a}}_{2k - 1} + d_{2k - 1} {\varvec{f}}_{n} } \\ \vdots \\ \end{array} } \right]_{{2n \times N_{k} }} = {\mathbf{0}} \hfill \\ \end{array} $$
(A.3)

Equation (A.3) contains 2n × Nk algebraic equations obtained based on the Arc-length method. We first divided these variables in H into two parts. One is P = [ωda1, b1, …, a2k−1b2k−1, …]T with 2n × Nk + 1 elements considered as unknown. The other is Pn = [c1d1, …, c2k−1d2k−1, …]T seen as the functions of P. Its detailed form can be obtained using MATLAB or Maple but is not given in this paper for simplicity.

The procedure using the Arc-length method [9] is as follows:

(1) Step 1: Suppose a start P is known, written as Pi, and the next imprecise solution Pi+10 can be calculated by

$$ {\varvec{p}}_{i + 1}^{0} = {\varvec{p}}_{i} + {\text{d}}s{\varvec{\nu}} $$
(A.4)

where ds is an arc length increment, set to 0.001 in this paper. The \({\varvec{\nu}} = {\varvec{\nu}}^{*} /\left| {{\varvec{\nu}}^{*} } \right|\) (ν* = [v1, v2, …, v2n×Nk+1]T) is the tangent vector of the change in P and can be obtained by

$$ v_{i} = \left( { - 1} \right)^{i + 1} \det \left[ {\frac{{{\text{d}}{\varvec{H}}}}{{{\text{d}}p_{1} }} \cdots \frac{{{\text{d}}{\varvec{H}}}}{{{\text{d}}p_{i - 1} }}\frac{{{\text{d}}{\varvec{H}}}}{{{\text{d}}p_{i + 1} }} \cdots \frac{{{\text{d}}{\varvec{H}}}}{{{\text{d}}p_{2n \times Nk + 1} }}} \right] $$
(A.5)

where pi−1 or pi+1 is the i−1th or i + 1th element in P, and dH/dpi−1 can be derived by the chain rule of derivation

$$ \frac{{{\text{d}}{\varvec{H}}}}{{{\text{d}}p_{i - 1} }} = \frac{{\partial {\varvec{H}}}}{{\partial p_{i - 1} }} + \frac{{\partial {\varvec{H}}}}{{\partial {\varvec{p}}_{{\text{n}}} }}\frac{{\partial {\varvec{p}}_{{\text{n}}}^{{\text{T}}} }}{{\partial p_{i - 1} }} $$
(A.6)

(2) Step 2: Use the Newton–Raphson method to handle Pi+10 to get an exact Pi+1. Suppose Pi+1 k represents Pi+10 after k Newton’s iterations. The Pi+1k+1 can be calculated by

$$ {\varvec{p}}_{i + 1}^{k + 1} = {\varvec{p}}_{i + 1}^{k} - \left[ {\begin{array}{*{20}c} {\frac{{\partial {\varvec{H}}\left( {{\varvec{p}}_{i + 1}^{k} } \right)}}{{\partial {\varvec{p}}}} + \frac{{\partial {\varvec{H}}\left( {{\varvec{p}}_{i + 1}^{k} } \right)}}{{\partial {\varvec{p}}_{{\text{n}}} }}\frac{{{\text{d}}{\varvec{p}}_{n}^{{\text{T}}} }}{{{\text{d}}{\varvec{p}}}}} \\ {{\varvec{\nu}}^{{\text{T}}} \left( {{\varvec{p}}_{i + 1}^{k} } \right)} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\varvec{H}}\left( {{\varvec{p}}_{i + 1}^{k} } \right)} \\ 0 \\ \end{array} } \right] $$
(A.7)

When \(\left| {{\varvec{p}}_{i + 1}^{k + 1} - {\varvec{p}}_{i + 1}^{k} } \right|/\left| {{\varvec{p}}_{i + 1}^{k} } \right| < {\text{tolerable error}}\), we consider Pi+1k+1 to be sufficiently accurate and treat it as Pi+1. Here, the tolerable error is set as 0.0001.

(3) Step 3: Repeat the above steps with Pi+1 as a new initial condition to get the next solution Pi+2 until ωd reaches the excitation frequency boundary.

Appendix B: Floquet theory

Suppose xd* = [xdm*, xd1*, …, xdn*]T is the solution of Eq. (26), and its period is Td. After it is subjected to a perturbation ∆xd, the new solution is xd = xd* + ∆xd. Substituting it into Eq. (26) and preserving the linear part of ∆xd, we get

$$ \Delta {\varvec{X}}_{{\text{d}}} ^{\prime} = {\varvec{A}}_{{\text{d}}} \left( \tau \right)\Delta {\varvec{X}}_{{\text{d}}} $$
(B.1)

where

$$ \Delta {\varvec{X}}_{{\text{d}}} = \left[ {\begin{array}{*{20}c} {\Delta {\varvec{x}}_{{\text{d}}} } \\ {\Delta {\varvec{x}}_{{\text{d}}} ^{\prime}} \\ \end{array} } \right],{\varvec{A}}_{{\text{d}}} \left( \tau \right) = \left[ {\begin{array}{*{20}c} {\varvec{I}} & {} \\ {} & {{\varvec{M}}_{{\text{d}}} } \\ \end{array} } \right]^{ - 1} \left[ {\begin{array}{*{20}c} {} & {\varvec{I}} \\ { - \left( {{\varvec{K}}_{{\text{d}}} + \frac{{{\text{d}}{\varvec{F}}_{{{\text{d}}n}} }}{{{\text{d}}{\varvec{x}}_{{\text{d}}} }}} \right)} & { - {\varvec{C}}_{{\text{d}}} } \\ \end{array} } \right] $$
$$ \frac{{{\text{d}}{\varvec{F}}_{{{\text{dn}}}} }}{{{\text{d}}{\varvec{x}}_{{\text{d}}} }} = 3\varepsilon_{1} \gamma \left( {\sum\limits_{i = 1}^{n} {x_{{{\text{d}}i}}^{*} } - x_{{{\text{dm}}}}^{*} } \right)^{2} {\varvec{f}}_{{\text{n}}} \left[ {\begin{array}{*{20}l} { - 1} \hfill & 1 \hfill & 1 \hfill & \cdots \hfill & 1 \hfill \\ \end{array} } \right] $$

where I denotes the unit matrix, the Ad(τ) is a time-varying matrix with period Td. Its monodromy matrix is \({\varvec{B}} = \exp \left( {\int_{0}^{{{\text{T}}_{{\text{d}}} }} {{\varvec{A}}_{{\text{d}}} \left( \tau \right){\text{d}}\tau } } \right)\). By calculating the eigenvalues of B, we can get the stability of xd* (The absolute values of all eigenvalues are smaller than 1, and the xd* is stable, otherwise unstable) [9].

It is worth noting that the exact monodromy matrix B is usually difficult to obtain. To address this problem, Hsu et al. [46] divided Td into Nt segments and considered Ad to be constant in each subinterval, so that an approximate formula for B can be derived

$$ {\varvec{B}} = \prod\limits_{k = 1}^{{N_{{\text{t}}} }} {\exp \left( {{\varvec{A}}_{{\text{d}}} \left( {\frac{2k - 1}{{2N_{t} }}{\text{T}}_{{\text{d}}} } \right)} \right)} $$
(B.2)

When Nt is large enough, Eq. (35) can accurately predict the stability of xd*. And it is set as 1000 in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Tang, Y., Qian, X. et al. Enhanced nonlinear performance of nonlinear energy sink under large harmonic excitation using acoustic black hole effect. Nonlinear Dyn 111, 12871–12898 (2023). https://doi.org/10.1007/s11071-023-08511-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08511-w

Keywords

Navigation