Skip to main content
Log in

Nonlinear dynamics of inclined viscoelastic pipes subjected to pulsatile flow and multi-harmonic excitations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Theoretical modeling and nonlinear responses of inclined simply supported pipes conveying fluid are presented, with focus on the interaction between nonlinear forced and parametric oscillations. Based on the Euler–Bernoulli beam theory, the new equations of motion accounting for the effects of stretching, curvature, and material nonlinearities are established. The Kelvin–Voigt viscoelastic model is adopted to model the system damping. Afterward, the Galerkin scheme is performed on the three-order approximation model and the resultant discretized equations are solved via two numerical techniques, including the pseudo-arclength technique and a direct time integration method. Analyses on static stability, linear natural frequency, and nonlinear dynamic are conducted to showcase the impacts of the inclination angle, mean flow velocity, pulsatile flow amplitude, and multi-harmonic external excitations on the static and dynamic characteristics, mainly developing to explore the appearance of primary and principal parametric resonances, the transition between nonlinear hardening and softening responses, and the significance of nonlinear curvature strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availibility

The data used in this research work are available from the authors by reasonably request.

References

  1. Poddubny, V.I., Shamarin, J.E., Chernko, A.L.S.: D A. Dynamics of undersea towing systems, Sudostroenye (1995)

  2. Ter Hofstede, E., Kottapalli, S., Shams, A.: Numerical prediction of flow induced vibrations in nuclear reactor applications. Nucl. Eng. Des. 319, 81–90 (2017)

    Google Scholar 

  3. Zhu, B., Chen, B., Guo, Y., Wang, Y.Q.: Analytical solutions for free and forced vibrations of elastically supported pipes conveying super-critical fluids. Acta Mechanica 234, 831–853 (2023)

  4. Liu, S., Sakr, M.: A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew. Sustain. Energy Rev. 19, 64–81 (2013)

    Google Scholar 

  5. Lumentut, M.F., Friswell, M.I.: A smart pipe energy harvester excited by fluid flow and base excitation. Acta Mech. 229(11), 4431–4458 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Lu, Z.Q., Chen, J., Ding, H., Chen, L.Q.: Energy harvesting of a fluid-conveying piezoelectric pipe. Appl. Math. Model. 107, 165–181 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Païdoussis, M.P., Li, G.X.: Pipes conveying fluid: a model dynamical problem. J. Fluid. Struct. 7, 137–204 (1993)

    Google Scholar 

  8. Kheiri, M., Païdoussis, M.P., Del Pozo, G.C., Amabili, M.: Dynamics of a pipe conveying fluid flexibly restrained at the ends. J. Fluid. Struct. 49, 360–385 (2014)

    Google Scholar 

  9. Zhu, B., Chen, X.C., Dong, Y.H., Li, Y.H.: Stability analysis of cantilever carbon nanotubes subjected to partially distributed tangential force and viscoelastic foundation. Appl. Mathem. Model. 73, 190–209 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Lu, Z.Q., Zhang, K.K., Ding, H., Chen, L.Q.: Nonlinear vibration effects on the fatigue life of fluid-conveying pipes composed of axially functionally graded materials. Nonlinear Dyn. 100, 1091–1104 (2020)

    Google Scholar 

  11. Guo, Y., Zhu, B., Yang, B., Li, Y.H.: Flow-induced buckling and post-buckling vibration characteristics of composite pipes in thermal environment. Ocean Eng. 243, 110267 (2022)

    Google Scholar 

  12. Ibrahim, R.A.: Overview of mechanics of pipes conveying fluids - part I: fundamental studies. J. Press. Vessel Technol. 132, 3 (2010)

    Google Scholar 

  13. Li, S.J., Karney, B.W., Liu, G.M.: FSI research in pipeline systems-a review of the literature. J. Fluids Struct. 57, 277–297 (2015)

    Google Scholar 

  14. Amabili, M., Karagiozis, K., Païdoussis, M.P.: Effect of geometric imperfections on non-linear stability of circular cylindrical shells conveying fluid. Int. J. Non-Linear Mech. 44(3), 276–289 (2009)

    Google Scholar 

  15. Modarres-Sadeghi, Y., Païdoussis, M.P.: Nonlinear dynamics of extensible fluid-conveying pipes, supported at both ends. J. Fluids Struct. 25(3), 535–543 (2009)

    Google Scholar 

  16. Nikolić, M., Rajković, M.: Bifurcations in nonlinear models of fluid-conveying pipes supported at both ends. J. Fluid. Struct. 22(2), 173–195 (2006)

    Google Scholar 

  17. Zhu, B., Chen, X.C., Guo, Y., Li, Y.H.: Static and dynamic characteristics of the post-buckling of fluid-conveying porous functionally graded pipes with geometric imperfections. Int. J. Mech. Sci. 189, 105947 (2021)

    Google Scholar 

  18. Païdoussis, M.P.: Fluid-structure interactions: slender structures and axial flow, vol. 1. Academic press (2014)

  19. Chang, G.H., Modarres-Sadeghi, Y.: Flow-induced oscillations of a cantilevered pipe conveying fluid with base excitation. J. Sound Vib. 333(18), 4265–4280 (2014)

    Google Scholar 

  20. Dehrouyeh Semnani, A.M., Zafari-Koloukhi, H., Dehdashti, E., Nikkhah-Bahrami, M.: A parametric study on nonlinear flow-induced dynamics of a fluid-conveying cantilevered pipe in post-flutter region from macro to micro scale. Int. J. Non-Linear Mech. 85, 207–225 (2016)

    Google Scholar 

  21. Dehrouyeh Semnani, A.M., Nikkhah-Bahrami, M., Yazdi, M.R.H.: On nonlinear vibrations of micropipes conveying fluid. Int. J. Eng. Sci. 117, 20–33 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Chen, W., Dai, H.L., Jia, Q.Q., Wang, L.: Geometrically exact equation of motion for large-amplitude oscillation of cantilevered pipe conveying fluid. Nonlinear Dyn. 98(3), 2097–2114 (2019)

    MATH  Google Scholar 

  23. Reddy, R.S., Panda, S., Natarajan, G.: Nonlinear dynamics of functionally graded pipes conveying hot fluid. Nonlinear Dyn. 99(3), 1989–2010 (2020)

    Google Scholar 

  24. Dehrouyeh Semnani, A.M.: Nonlinear geometrically exact dynamics of fluid-conveying cantilevered hard magnetic soft pipe with uniform and nonuniform magnetizations. Mech. Syst. Signal Process. 188, 110016 (2023)

    Google Scholar 

  25. Gan, C.B., Jing, S., Yang, S.X., Lei, H.: Effects of supported angle on stability and dynamical bifurcations of cantilevered pipe conveying fluid. Appl. Math. Mech. 36(6), 729–746 (2015)

    MathSciNet  Google Scholar 

  26. Peng, G., Xiong, Y.M., Liu, L.M., Gao, Y., Wang, M.H., Zhang, Z.: 3-D non-linear dynamics of inclined pipe conveying fluid, supported at both ends. J. Sound Vib. 449, 405–426 (2019)

    Google Scholar 

  27. Reddy, R.S., Panda, S., Gupta, A.: Nonlinear dynamics of an inclined FG pipe conveying pulsatile hot fluid. Int. J. Non-Linear Mech. 118, 103276 (2020)

    Google Scholar 

  28. Lips, S., Meyer, J.P.: Two-phase flow in inclined tubes with specific reference to condensation: a review. Int. J. Multiphase Flow 37(8), 845–859 (2011)

    Google Scholar 

  29. Alfosail, F.K., Nayfeh, A.H., Younis, M.I.: Natural frequencies and mode shapes of statically deformed inclined risers. Int. J. Non-Linear Mech. 94, 12–19 (2017)

    Google Scholar 

  30. Rivero Rodriguez, J., Pérez-Saborid, M.: Numerical investigation of the influence of gravity on flutter of cantilevered pipes conveying fluid. J. Fluids Struct. 55, 106–121 (2015)

    Google Scholar 

  31. Benjamin, T.B.: Dynamics of a system of articulated pipes conveying fluid I. Theory Proc. R. Soc. A 261(1307), 457–486 (1962)

    MathSciNet  MATH  Google Scholar 

  32. Benjamin, T.B.: Dynamics of a system of articulated pipes conveying fluid II. Exper. Proc. R. Soc. A 261(1307), 487–499 (1962)

    MathSciNet  MATH  Google Scholar 

  33. Chen, W., Hu, Z.Y., Dai, H.L., Wang, L.: Extremely large-amplitude oscillation of soft pipes conveying fluid under gravity. Appl. Math. Mech. 41(9), 1381–1400 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Yan, H., Li, M.W., Wang, L.: Bifurcation and stability analysis of static equilibrium configuration of curved pipe conveying fluid. Eur. J. Mechanics-A/Solids 97, 104813 (2023)

    MathSciNet  MATH  Google Scholar 

  35. Wang, G.X., Ding, H., Chen, L.Q.: Dynamic effect of internal resonance caused by gravity on the nonlinear vibration of vertical cantilever beams. J. Sound Vib. 474, 115265 (2020)

    Google Scholar 

  36. Hayashi, I., Kaneko, S.: Pressure pulsations in piping system excited by a centrifugal turbomachinery taking the damping characteristics into consideration. J. Fluid. Struct. 45, 216–234 (2014)

    Google Scholar 

  37. Łuczko, J., Czerwiński, A.: Parametric vibrations of flexible hoses excited by a pulsating fluid flow, Part I: Modelling, solution method and simulation. J. Fluid. Struct. 55, 155–173 (2015)

    Google Scholar 

  38. Ginsberg, J.H.: The dynamic stability of a pipe conveying a pulsatile flow. Int. J. Eng. Sci. 11(9), 1013–1024 (1973)

    MATH  Google Scholar 

  39. Païdoussis, M.P., Sundararajan, C.: Parametric and combination resonances of a pipe conveying pulsating fluid. J. Appl. Mech. 42(4), 780–784 (1975)

    MATH  Google Scholar 

  40. Païdoussis, M.P., Issid, N.T.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33(3), 267–294 (1974)

    Google Scholar 

  41. Païdoussis, M.P., Issid, N.T.: Experiments on parametric resonance of pipes containing pulsatile flow. J. Appl. Mech. 43(2), 198–202 (1976)

    Google Scholar 

  42. Yoshizawa, M., Nao, H., Hasegawa, E., Tsujioka, Y.: Lateral vibration of a flexible pipe conveying fluid with pulsating flow. Bullet. JSME 29(253), 2243–2250 (1986)

    Google Scholar 

  43. Namchchivaya, N.S.: Non-linear dynamics of supported pipe conveying pulsating fluid-I. Subharmonic resonance. Int. J. Non-Linear Mech. 24(3), 185–196 (1989)

    MATH  Google Scholar 

  44. Namchchivaya, N.S., Tien, W.M.: Non-linear dynamics of supported pipe conveying pulsating fluid-II. Combination resonance. Int. J. Non-Linear Mech. 24(3), 197–208 (1989)

    MATH  Google Scholar 

  45. Panda, L.N., Kar, R.C.: Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlinear Dyn. 49(1), 9–30 (2007)

    MATH  Google Scholar 

  46. Lu, Z.Q., Zhang, K.K., Ding, H., Chen, L.Q.: Internal resonance and stress distribution of pipes conveying fluid in supercritical regime. Int. J. Mech. Sci. 186, 105900 (2020)

    Google Scholar 

  47. Li, Y.D., Yang, Y.R.: Nonlinear vibration of slightly curved pipe with conveying pulsating fluid. Nonlinear Dyn. 88(4), 2513–2529 (2017)

    Google Scholar 

  48. Jin, J.D., Song, Z.Y.: Parametric resonances of supported pipes conveying pulsating fluid. J. Fluids Struct. 20(6), 763–783 (2005)

    Google Scholar 

  49. Zhou, S., Yu, T.J., Yang, X.D., Zhang, W.: Global dynamics of pipes conveying pulsating fluid in the supercritical regime. Int. J. Appl. Mech. 9(2), 1750029 (2017)

    Google Scholar 

  50. Zhang, Y.F., Yao, M.H., Zhang, W., Wen, B.C.: Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance. Aerosp. Sci. Technol. 68, 441–453 (2017)

    Google Scholar 

  51. Zhu, B., Xu, Q., Li, M., Li, Y.H.: Nonlinear free and forced vibrations of porous functionally graded pipes conveying fluid and resting on nonlinear elastic foundation. Compos. Struct. 252, 112672 (2020)

    Google Scholar 

  52. Guo, Y., Zhu, B., Li, Y.H.: Nonlinear dynamics of fluid-conveying composite pipes subjected to time-varying axial tension in sub-and super-critical regimes. Appl. Math. Model. 101, 632–653 (2022)

    MathSciNet  MATH  Google Scholar 

  53. Mao, X.Y., Ding, H., Chen, L.Q.: Steady-state response of a fluid-conveying pipe with 3: 1 internal resonance in supercritical regime. Nonlinear Dyn. 86(2), 795–809 (2016)

    Google Scholar 

  54. Gan, C.B., Guo, S.Q., Lei, H., Yang, S.X.: Random uncertainty modeling and vibration analysis of a straight pipe conveying fluid. Nonlinear Dyn. 77(3), 503–519 (2014)

    Google Scholar 

  55. Sazesh, S., Shams, S.: Vibration analysis of cantilever pipe conveying fluid under distributed random excitation. J. Fluid. Struct. 87, 84–101 (2019)

    Google Scholar 

  56. Chen, S.S.: Forced vibration of a cantilevered tube conveying fluid. J. Acoust. Soc. Am. 48, 773–775 (1970)

    Google Scholar 

  57. Ilgamov, M.A., Tang, D.M., Dowell, E.H.: Flutter and forced response of a cantilevered pipe: the influence of internal pressure and nozzle discharge. J. Fluid. Struct. 8(2), 139–156 (1994)

    Google Scholar 

  58. Chen, L.Q., Zhang, Y.L., Zhang, G.C., Ding, H.: Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed. Int. J. Non-Linear Mech. 58, 11–21 (2014)

    Google Scholar 

  59. Zhou, K., Ni, Q., Wang, L., Dai, H.L.: Planar and non-planar vibrations of a fluid-conveying cantilevered pipe subjected to axial base excitation. Nonlinear Dyn. 99(4), 2527–2549 (2020)

    Google Scholar 

  60. Zhou, K., Ni, Q., Dai, H.L., Wang, L.: Nonlinear forced vibrations of supported pipe conveying fluid subjected to an axial base excitation. J. Sound Vib. 471, 115189 (2020)

    Google Scholar 

  61. Gulyayev, V.I., Tolbatov, E.Y.: Forced and self-excited vibrations of pipes containing mobile boiling fluid clots. J. Sound Vib. 257(3), 425–437 (2002)

    Google Scholar 

  62. Alam, M., Mishra, S.K.: Nonlinear vibration of nonlocal strain gradient functionally graded beam on nonlinear compliant substrate. Compos. Struct. 259, 113447 (2021)

    Google Scholar 

  63. Tan, X., Ding, H., Sun, J.Q., Chen, L.Q.: Primary and super-harmonic resonances of Timoshenko pipes conveying high-speed fluid. Ocean Eng. 203, 107258 (2020)

    Google Scholar 

  64. Yuan, J.R., Fan, X., Shu, S., Ding, H., Chen, L.Q.: Free vibration analysis and numerical simulation of slightly curved pipe conveying fluid based on Timoshenko beam theory. Int. J. Appl. Mech. 14(2), 2250014 (2022)

    Google Scholar 

  65. Tan, X., Mao, X.Y., Ding, H., Chen, L.Q.: Vibration around non-trivial equilibrium of a supercritical Timoshenko pipe conveying fluid. J. Sound Vib. 428, 104–118 (2018)

    Google Scholar 

  66. Tan, X., Ding, H., Chen, L.Q.: Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model. J. Sound Vib. 455, 241–255 (2019)

    Google Scholar 

  67. Farokhi, H., Xia, Y.W., Erturk, A.: Experimentally validated geometrically exact model for extreme nonlinear motions of cantilevers. Nonlinear Dyn. 107(1), 457–475 (2022)

    Google Scholar 

  68. Semler, C., Li, G.X., Païdoussis, M.P.: The non-linear equations of motion of pipes conveying fluid. J. Sound Vib. 169(5), 577–599 (1994)

    MATH  Google Scholar 

  69. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley (2008)

  70. Rosen, A., Friedmann, P.: The nonlinear behavior of elastic slender straight beams undergoing small strains and moderate rotations. J. Appl. Mech. 46, 161–168 (1979)

    MATH  Google Scholar 

  71. Hodges, D.H., Crespo da Silva, M.R.M., Peters, D.A.: Nonlinear effects in the static and dynamic behavior of beams and rotor blades. Vertica 12(3), 243–256 (1988)

    Google Scholar 

  72. Feng, A., Holland, C.D., Gallun, S.E.: Development and comparison of a generalized semi-implicit Runge-Kutta method with Gear’s method for systems of coupled differential and algebraic equations. Comput. Chem. Eng. 8(1), 51–59 (1984)

    Google Scholar 

  73. Keller, H.B.: Lectures on Numerical Methods in Bifurcation Problems. Springer-Verlag (1987)

  74. Mittelmann, H.D.: A pseudo-arclength continuation method for nonlinear eigenvalue problems. SIAM J. Num. Anal. 23(5), 1007–1016 (1986)

    MathSciNet  MATH  Google Scholar 

  75. Lacarbonara, W.: Nonlinear Structural mechanics. Springer (2013)

  76. Dehrouyeh Semnani, A.M., Nikkhah-Bahrami, M., Yazdi, M.R.H.: On nonlinear stability of fluid-conveying imperfect micropipes. Int. J. Eng. Sci. 120, 254–271 (2017)

    MathSciNet  MATH  Google Scholar 

  77. Dehrouyeh Semnani, A.M., Jafarpour, S.: Nonlinear thermal stability of temperature-dependent metal matrix composite shallow arches with functionally graded fiber reinforcements. Int. J. Mech. Sci. 161–162, 105075 (2019)

    Google Scholar 

  78. Krenk, S.: Complex modes and frequencies in damped structural vibrations. J. Sound Vib. 270(4–5), 981–996 (2004)

    Google Scholar 

  79. Ryu, B.J., Ryu, S.U., Kim, G.H., Yim, K.B.: Vibration and dynamic stability of pipes conveying fluid on elastic foundations. KSME Int. J. 18(12), 2148–2157 (2004)

    Google Scholar 

  80. Vijayan, K., Woodhouse, J.: Shock amplification, curve veering and the role of damping. J. Sound Vib. 333(5), 1379–1389 (2014)

    Google Scholar 

  81. Zhu, B., Guo, Y., Chen, B., Li, Y.H.: Nonlinear nonplanar dynamics of porous functionally graded pipes conveying fluid. Commun. Nonlinear Sci. Num. Simul. 117, 106907 (2023)

    MathSciNet  MATH  Google Scholar 

  82. Dehrouyeh Semnani, A.M., Dehdashti, E., Yazdi, M.R.H., Nikkhah-Bahrami, M.: Nonlinear thermo-resonant behavior of fluid-conveying FG pipes. Int. J. Eng. Sci. 144, 103141 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the supports from the National Natural Science Foundation of China (Nos. 12202097 and 12002225) and Natural Science Foundation of Sichuan Province (No. 2022NSFSC1945).

Funding

This project was supported by the National Natural Science Foundation of China (Nos. 12202097 and 12002225) and Natural Science Foundation of Sichuan Province (No. 2022NSFSC1945).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Coefficient matrices in the Galerkin discretization

The coefficient matrices of the equations of motion, i.e., Eqs. (26) and (27), are

$$\begin{aligned} {{\textbf {M}}}_{ij}^1&=\int _{0}^{1}\varphi _i\varphi _j\text {d}\xi , \end{aligned}$$
(A.1)
$$\begin{aligned} {{\textbf {C}}}_{ij}^1&=2\sqrt{\beta }v\int _{0}^{1}\varphi _i\varphi _j^{\prime }\text {d}\xi -a\kappa ^2\int _{0}^{1}\varphi _i\varphi _j^{\prime \prime }\text {d}\xi , \end{aligned}$$
(A.2)
$$\begin{aligned} {{\textbf {K}}}_{ij}^1&=\left( v^2-\kappa ^2\right) \int _{0}^{1}\varphi _i\varphi _j^{\prime \prime }\text {d}\xi +\sqrt{\beta }{\dot{v}}\int _{0}^{1}\varphi _i\varphi _j^{\prime }\text {d}\xi , \end{aligned}$$
(A.3)
$$\begin{aligned} {{\textbf {A}}}_{ijk}^1&=\left( \Gamma -\Pi \right) \int _{0}^{1}\varphi _i\phi _j^{\prime }\phi _k^{\prime \prime }\text {d}\xi -\int _{0}^{1}\varphi _i\phi _j^{\prime \prime }\phi _k^{\prime \prime \prime }\text {d}\xi \nonumber \\&\quad -\int _{0}^{1}\varphi _i\phi _j^{\prime }\phi _k^{\prime \prime \prime \prime }\text {d}\xi -\kappa ^2\int _{0}^{1}\varphi _i\phi _j^{\prime }\phi _k^{\prime \prime }\text {d}\xi \nonumber \\&\quad +\left( \sqrt{\beta }{\dot{v}}-\gamma \text {cos}\chi \right) \nonumber \\&\quad \quad \int _{0}^{1}\varphi _i\left( \frac{1}{2}\phi _j^{\prime }\phi _k^{\prime }-\phi _j^{\prime }\phi _k^{\prime \prime }+\xi \phi _j^{\prime }\phi _k^{\prime \prime }\right) \text {d}\xi , \end{aligned}$$
(A.4)
$$\begin{aligned} {{\textbf {B}}}_{ijk}^1&=-a\kappa ^2\int _{0}^{1}\varphi _i\left( \phi _j^{\prime }\phi _k^{\prime \prime }+\phi _j^{\prime \prime }\phi _k^{\prime }\right) \text {d}\xi \nonumber \\&\quad -a\int _{0}^{1}\varphi _i\left( \phi _j^{\prime \prime }\phi _k^{\prime \prime \prime }+\phi _j^{\prime \prime \prime }\phi _k^{\prime \prime }+\phi _j^{\prime }\phi _k^{\prime \prime \prime \prime }+\phi _j^{\prime \prime \prime \prime }\phi _k^{\prime }\right) \text {d}\xi , \end{aligned}$$
(A.5)
$$\begin{aligned} {{\textbf {D}}}_{ijkl}^1&=\int _{0}^{1}\varphi _i\left( 4\varphi _j^{\prime \prime \prime }\phi _k^{\prime }\phi _l^{\prime \prime }+5\varphi _j^{\prime \prime }\phi _k^{\prime }\phi _l^{\prime \prime \prime }+3\varphi _j^{\prime }\phi _k^{\prime \prime }\phi _l^{\prime \prime \prime }\right. \nonumber \\&\quad \left. +\varphi _j^{\prime \prime \prime \prime }\phi _k^{\prime }\phi _l^{\prime }+3\varphi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime \prime \prime }+2\varphi _j^{\prime \prime }\phi _k^{\prime \prime }\phi _l^{\prime \prime }\right) \text {d}\xi \nonumber \\&\quad -\left( \Gamma -\Pi \right) \int _{0}^{1}\varphi _i\left( \varphi _j^{\prime \prime }\phi _k^{\prime }\phi _l^{\prime }+2\varphi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime }\right) \text {d}\xi \nonumber \\&\quad +\kappa ^2\int _{0}^{1}\varphi _i\left( \varphi _j^{\prime \prime }\phi _k^{\prime }\phi _l^{\prime }+2\varphi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime }\right) \text {d}\xi \nonumber \\&\quad +\left( \sqrt{\beta }{\dot{v}}-\gamma \text {cos}\chi \right) \nonumber \\&\quad \quad \int _{0}^{1}\varphi _i\left( -\varphi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime }+\varphi _j^{\prime \prime }\phi _k^{\prime }\phi _l^{\prime }-\xi \varphi _j^{\prime \prime }\phi _k^{\prime }\phi _l^{\prime }\right. \nonumber \\&\quad \left. +2\varphi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime }-2\xi \varphi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime }\right) \text {d}\xi , \end{aligned}$$
(A.6)
$$\begin{aligned} {{\textbf {E}}}_{ijkl}^{11}&=a\kappa ^2\int _{0}^{1}\varphi _i\left( 2\varphi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime }+\varphi _j^{\prime \prime }\phi _k^{\prime }\phi _l^{\prime }\right) \text {d}\xi \nonumber \\&\quad +a\int _{0}^{1}\varphi _i\left( 2\varphi _j^{\prime \prime }\phi _k^{\prime \prime }\phi _l^{\prime \prime }+3\varphi _j^{\prime }\phi _k^{\prime \prime }\phi _l^{\prime \prime \prime }+5\varphi _j^{\prime \prime }\phi _k^{\prime }\phi _l^{\prime \prime \prime }\right. \nonumber \\&\quad \left. +4\varphi _j^{\prime \prime \prime }\phi _k^{\prime }\phi _l^{\prime \prime }+3\varphi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime \prime \prime }+\varphi _j^{\prime \prime \prime \prime }\phi _k^{\prime }\phi _l^{\prime }\right) \text {d}\xi , \end{aligned}$$
(A.7)
$$\begin{aligned} {{\textbf {E}}}_{ijkl}^{12}&=a\kappa ^2\int _{0}^{1}\varphi _i\left( 2\varphi _j^{\prime \prime }\phi _k^{\prime }\phi _l^{\prime }+2\varphi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime }+2\varphi _j^{\prime }\phi _k^{\prime \prime }\phi _l^{\prime }\right) \text {d}\xi \nonumber \\&\quad +a\int _{0}^{1}\varphi _i\left( 4\varphi _j^{\prime \prime }\phi _k^{\prime \prime }\phi _l^{\prime \prime }+4\varphi _j^{\prime \prime \prime }\phi _k^{\prime }\phi _l^{\prime \prime }\right. \nonumber \\&\quad +4\varphi _j^{\prime \prime \prime }\phi _k^{\prime \prime }\phi _l^{\prime }+5\varphi _j^{\prime \prime }\phi _k^{\prime }\phi _l^{\prime \prime \prime }\nonumber \\&\quad +3\varphi _j^{\prime }\phi _k^{\prime \prime }\phi _l^{\prime \prime \prime }+5\varphi _j^{\prime \prime }\phi _k^{\prime \prime \prime }\phi _l^{\prime }+3\varphi _j^{\prime }\phi _k^{\prime \prime \prime }\phi _l^{\prime \prime }+2\varphi _j^{\prime \prime \prime \prime }\phi _k^{\prime }\phi _l^{\prime }\nonumber \\&\quad \left. +3\varphi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime \prime \prime } +3\varphi _j^{\prime }\phi _k^{\prime \prime \prime \prime }\phi _l^{\prime }\right) \text {d}\xi , \end{aligned}$$
(A.8)
$$\begin{aligned} {{\textbf {M}}}_{ij}^2&=\int _{0}^{1}\phi _i\phi _j\text {d}\xi , \end{aligned}$$
(A.9)
$$\begin{aligned} {{\textbf {C}}}_{ij}^2&=2\sqrt{\beta }v\int _{0}^{1}\phi _i\phi _j^{\prime }\text {d}\xi +a\int _{0}^{1}\phi _i\phi _j^{\prime \prime \prime \prime }\text {d}\xi , \end{aligned}$$
(A.10)
$$\begin{aligned} {{\textbf {K}}}_{ij}^2&=\int _{0}^{1}\phi _i\phi _j^{\prime \prime \prime \prime }\text {d}\xi +v^2\int _{0}^{1}\phi _i\phi _j^{\prime \prime }\text {d}\xi -\left( \Gamma -\Pi \right) \nonumber \\&\quad \int _{0}^{1}\phi _i\phi _j^{\prime \prime }\text {d}\xi +\left( \sqrt{\beta }{\dot{v}}-\gamma \text {cos}\chi \right) \nonumber \\&\quad \int _{0}^{1}\phi _i\left( \phi _j^{\prime \prime }-\xi \phi _j^{\prime \prime }\right) \text {d}\xi \nonumber \\&\quad +\gamma \text {cos}\chi \int _{0}^{1}\left( \phi _i\phi _j^{\prime }-\phi _i\phi _j^{\prime \prime }+\phi _i \xi \phi _j^{\prime \prime }\right) \text {d}\xi , \end{aligned}$$
(A.11)
$$\begin{aligned} {{\textbf {A}}}_{ijk}^2&=\left( \Gamma -\Pi \right) \int _{0}^{1}\phi _i\left( \varphi _j^{\prime \prime }\phi _k^{\prime }+\varphi _j^{\prime }\phi _k^{\prime \prime }\right) \text {d}\xi \nonumber \\&\quad -\int _{0}^{1}\phi _i\left( 3\varphi _j^{\prime \prime \prime }\phi _k^{\prime \prime }+4\varphi _j^{\prime \prime }\phi _k^{\prime \prime \prime }+\varphi _j^{\prime \prime \prime \prime }\phi _k^{\prime }+2\varphi _j^{\prime }\phi _k^{\prime \prime \prime \prime }\right) \text {d}\xi \nonumber \\&\quad -\kappa ^2\int _{0}^{1}\phi _i\left( \varphi _j^{\prime \prime }\phi _k^{\prime }+\varphi _j^{\prime }\phi _k^{\prime \prime }\right) \text {d}\xi +\left( \sqrt{\beta }{\dot{v}}-\gamma \text {cos}\chi \right) \nonumber \\&\quad \int _{0}^{1}\phi _i\left( \varphi _j^{\prime }\phi _k^{\prime }-\varphi _j^{\prime \prime }\phi _k^{\prime }+\xi \varphi _j^{\prime \prime }\phi _k^{\prime } -\varphi _j^{\prime }\phi _k^{\prime \prime }+\xi \varphi _j^{\prime }\phi _k^{\prime \prime }\right) \text {d}\xi , \end{aligned}$$
(A.12)
$$\begin{aligned} {{\textbf {B}}}_{ijk}^{21}&=-a\kappa ^2\int _{0}^{1}\phi _i\left( \varphi _j^{\prime \prime }\phi _k^{\prime }+\varphi _j^{\prime }\phi _k^{\prime \prime }\right) \text {d}\xi \nonumber \\&\quad -a\int _{0}^{1}\phi _i\left( 4\varphi _j^{\prime \prime }\phi _k^{\prime \prime \prime }+3\varphi _j^{\prime \prime \prime }\phi _k^{\prime \prime }+2\varphi _j^{\prime }\phi _k^{\prime \prime \prime \prime }+\varphi _j^{\prime \prime \prime \prime }\phi _k^{\prime }\right) \text {d}\xi , \end{aligned}$$
(A.13)
$$\begin{aligned} {{\textbf {B}}}_{ijk}^{22}&=-a\kappa ^2\int _{0}^{1}\phi _i\left( \varphi _j^{\prime \prime }\phi _k^{\prime }+\varphi _j^{\prime }\phi _k^{\prime \prime }\right) \text {d}\xi \nonumber \\&\quad -a\int _{0}^{1}\phi _i\left( 3\varphi _j^{\prime \prime \prime }\phi _k^{\prime \prime }+4\varphi _j^{\prime \prime }\phi _k^{\prime \prime \prime }+\varphi _j^{\prime \prime \prime \prime }\phi _k^{\prime }+2\varphi _j^{\prime }\phi _k^{\prime \prime \prime \prime }\right) \text {d}\xi , \end{aligned}$$
(A.14)
$$\begin{aligned} {{\textbf {D}}}_{ijkl}^{21}&=-\left( \Gamma -\Pi \right) \int _{0}^{1}\phi _i\left( 2\varphi _j^{\prime }\varphi _k^{\prime \prime }\phi _l^{\prime }+\varphi _j^{\prime }\varphi _k^{\prime }\phi _l^{\prime \prime }\right) \text {d}\xi \nonumber \\&\quad +\int _{0}^{1}\phi _i\left( 8\varphi _j^{\prime \prime }\varphi _k^{\prime \prime }\phi _l^{\prime \prime }+7\varphi _j^{\prime \prime }\varphi _k^{\prime \prime \prime }\phi _l^{\prime }+9\varphi _j^{\prime }\varphi _k^{\prime \prime \prime }\phi _l^{\prime \prime }\right. \nonumber \\&\quad \left. +12\varphi _j^{\prime }\varphi _k^{\prime \prime }\phi _l^{\prime \prime \prime }+3\varphi _j^{\prime }\varphi _k^{\prime \prime \prime \prime }\phi _l^{\prime }+3\varphi _j^{\prime }\varphi _k^{\prime }\phi _{l}^{\prime \prime \prime \prime }\right) \text {d}\xi \nonumber \\&\quad +\kappa ^2\int _{0}^{1}\phi _i\left( 2\varphi _j^{\prime }\varphi _k^{\prime \prime }\phi _l^{\prime }+\varphi _j^{\prime }\varphi _k^{\prime }\phi _l^{\prime \prime }\right) \text {d}\xi \nonumber \\&\quad +\left( \sqrt{\beta }{\dot{v}}-\gamma \text {cos}\chi \right) \int _{0}^{1}\phi _i\left( -\varphi _j^{\prime }\varphi _k^{\prime }\phi _l^{\prime }+2\varphi _j^{\prime }\varphi _k^{\prime \prime }\phi _l^{\prime }\right. \nonumber \\&\quad \left. -2\xi \varphi _j^{\prime }\varphi _k^{\prime \prime }\phi _l^{\prime }+\varphi _j^{\prime }\varphi _k^{\prime }\phi _l^{\prime \prime }-\xi \varphi _j^{\prime }\varphi _k^{\prime }\phi _l^{\prime \prime }\right) \text {d}\xi , \end{aligned}$$
(A.15)
$$\begin{aligned} {{\textbf {D}}}_{ijkl}^{22}&=\frac{3}{2}\left( \Gamma -\Pi \right) \int _{0}^{1}\phi _i\phi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime }\text {d}\xi \nonumber \\&\quad -2\int _{0}^{1}\phi _i\left( \phi _j^{\prime \prime }\phi _k^{\prime \prime }\phi _l^{\prime \prime }+4\phi _j^{\prime }\phi _k^{\prime \prime }\phi _l^{\prime \prime \prime }+\phi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime \prime \prime }\right) \text {d}\xi \nonumber \\&\quad -\frac{3}{2}\kappa ^2\int _{0}^{1}\phi _i\phi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime }\text {d}\xi +\frac{1}{2}\left( \sqrt{\beta }{\dot{v}}-\gamma \text {cos}\chi \right) \nonumber \\&\quad \int _{0}^{1}\phi _i\left( \phi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime }-3\phi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime }+3\xi \phi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime }\right) \text {d}\xi , \end{aligned}$$
(A.16)
$$\begin{aligned} {{\textbf {E}}}_{ijkl}^{21}&=2a\kappa ^2\int _{0}^{1}\phi _i\left( \varphi _j^{\prime }\varphi _k^{\prime \prime }\phi _l^{\prime }+\varphi _j^{\prime }\varphi _k^{\prime }\phi _l^{\prime \prime }+\varphi _j^{\prime \prime }\varphi _k^{\prime }\phi _l^{\prime }\right) \text {d}\xi \nonumber \\&\quad +a\int _{0}^{1}\phi _i\left( 16\varphi _j^{\prime \prime }\varphi _k^{\prime \prime }\phi _l^{\prime \prime }+9\varphi _j^{\prime }\varphi _k^{\prime \prime \prime }\phi _l^{\prime \prime }\right. \nonumber \\&\quad +7\varphi _j^{\prime \prime }\varphi _k^{\prime \prime \prime }\phi _l^{\prime }+12\varphi _j^{\prime }\varphi _k^{\prime \prime }\phi _j^{\prime \prime \prime }+12\varphi _j^{\prime \prime }\varphi _k^{\prime }\phi _l^{\prime \prime \prime }\nonumber \\&\quad +7\varphi _j^{\prime \prime \prime }\varphi _k^{\prime \prime }\phi _l^{\prime }+9\varphi _j^{\prime \prime \prime }\varphi _k^{\prime }\phi _l^{\prime \prime }+3\varphi _j^{\prime }\varphi _k^{\prime \prime \prime \prime }\phi _l^{\prime }\nonumber \\&\quad \left. +6\varphi _j^{\prime }\varphi _k^{\prime }\phi _l^{\prime \prime \prime \prime }+3\varphi _j^{\prime \prime \prime \prime }\varphi _k^{\prime }\phi _l^{\prime }\right) \text {d}\xi , \end{aligned}$$
(A.17)
$$\begin{aligned} {{\textbf {E}}}_{ijkl}^{22}&=a\kappa ^2\int _{0}^{1}\phi _i\left( 2\varphi _j^{\prime }\varphi _k^{\prime \prime }\phi _l^{\prime }+\varphi _j^{\prime }\varphi _k^{\prime }\phi _l^{\prime \prime }\right) \text {d}\xi \nonumber \\&\quad +a\int _{0}^{1}\phi _i\left( 8\varphi _j^{\prime \prime }\varphi _k^{\prime \prime }\phi _l^{\prime \prime }+7\varphi _j^{\prime \prime }\varphi _k^{\prime \prime \prime }\phi _l^{\prime }+9\varphi _j^{\prime }\varphi _k^{\prime \prime \prime }\phi _l^{\prime \prime }\right. \nonumber \\&\quad \left. +12\varphi _j^{\prime }\varphi _k^{\prime \prime }\phi _l^{\prime \prime \prime }+3\varphi _j^{\prime }\varphi _k^{\prime \prime \prime \prime }\phi _l^{\prime }+3\varphi _j^{\prime }\varphi _k^{\prime }\phi _l^{\prime \prime \prime \prime }\right) \text {d}\xi , \end{aligned}$$
(A.18)
$$\begin{aligned} {{\textbf {E}}}_{ijkl}^{23}&=-a\kappa ^2\int _{0}^{1}\phi _i\left( 3\phi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime }+\frac{3}{2}\phi _j^{\prime \prime }\phi _k^{\prime }\phi _l^{\prime }\right) \text {d}\xi \nonumber \\&\quad -2a\int _{0}^{1}\phi _i\left( 3\phi _j^{\prime \prime }\phi _k^{\prime \prime }\phi _l^{\prime \prime }+4\phi _j^{\prime }\phi _k^{\prime \prime }\phi _l^{\prime \prime \prime }+4\phi _j^{\prime \prime }\phi _k^{\prime }\phi _l^{\prime \prime \prime }\right. \nonumber \\&\quad \left. +4\phi _j^{\prime \prime \prime }\phi _k^{\prime }\phi _l^{\prime \prime }+2\phi _j^{\prime }\phi _k^{\prime }\phi _l^{\prime \prime \prime \prime }+\phi _j^{\prime \prime \prime \prime }\phi _k^{\prime }\phi _l^{\prime }\right) \text {d}\xi , \end{aligned}$$
(A.19)
$$\begin{aligned} {{\textbf {g}}}_i^2&=\gamma \text {sin}\chi \int _{0}^{1}\phi _i\text {d}\xi , \end{aligned}$$
(A.20)
$$\begin{aligned} {{\textbf {f}}}_i^2&=f_0\left[ \text {cos}\left( \omega _f\tau \right) +\sum _{j=2}^{J}\left( f_{j,c}\text {cos}\left( j\omega _f\tau \right) \right. \right. \nonumber \\&\quad \left. \left. +f_{j,s}\text {sin}\left( j\omega _f\tau \right) \right) \right] \int _{0}^{1}\phi _i\text {d}\xi . \end{aligned}$$
(A.21)

Appendix B. Convergence study

To obtain accurate and convergence results of the pipe’s response, the truncated number, N, and time step, \(\triangle t\), utilized in the BDF technique should be determined. Since the pipe system has rich dynamic responses when conveying high flow velocity, the mean flow velocity \(v_0=7\) is chosen in the present study. As shown in Fig. 21, the nonlinear responses predicted using \(\triangle t=0.01\) and 0.001 are almost the same for both cases of \(\chi =0\) and \(\frac{\pi }{4}\), which means taking \(\triangle t=0.01\) in the Galerkin discretization process is acceptable. As to the chosen of the truncated number, by comparing three values of N, it is seen that the truncated number needs to be at least at \(N=6\). In addition, by comparing the frequency-response curves and stability boundaries of the vertical pipe, it is clearly seen that the numerical results predicted using the truncated number \(N=4\) are acceptable (Fig. 22). In summary, the truncated number and time step are selected as \(N=6\) and \(\triangle t=0.01\), respectively, in all numerical calculations.

Fig. 21
figure 21

Nonlinear responses of the midpoint transverse displacement of the pipe with different truncated numbers and time steps

Fig. 22
figure 22

Frequency-response curves and stability boundaries of the vertical pipe with different truncated numbers

Appendix C. Derivation of the simplified model

For moderate rotations in the fluid-conveying pipe, the higher-order curvature terms can be neglected; so, the von K\(\acute{\text {a}}\)rm\(\acute{\text {a}}\)n geometric nonlinearity is adopted, for which the following expression for the axial strain and curvature can be obtained:

$$\begin{aligned}&\varepsilon _0\left( x, t\right) =\frac{\partial u}{\partial x}+\frac{1}{2}\left( \frac{\partial w}{\partial x}\right) ^2, \end{aligned}$$
(C.1)
$$\begin{aligned}&k\left( x, t\right) =\frac{\partial ^2 w}{\partial x^2}. \end{aligned}$$
(C.2)

Substituting Eqs. (C.1) and (C.2) into Eqs. (17) and (18), the nonlinear equations for an inclined fluid-conveying pipe with moderate rotations can be expressed as

$$\begin{aligned}&\left( M+m\right) \frac{\partial ^2 u}{\partial t^2}+2MU\frac{\partial ^2 u}{\partial x\partial t}+MU^2\frac{\partial ^2 u}{\partial x^2}\nonumber \\&\quad +M\frac{\partial U}{\partial t}\frac{\partial u}{\partial x}-EA\left( \frac{\partial ^2 u}{\partial x^2}+\frac{\partial w}{\partial x}\frac{\partial ^2 w}{\partial x^2}\right) \nonumber \\&\quad -\alpha EA\left( \frac{\partial ^3 u}{\partial x^2\partial t}+\frac{\partial ^2 w}{\partial x\partial t}\frac{\partial ^2 w}{\partial x^2}+\frac{\partial w}{\partial x}\frac{\partial ^3 w}{\partial x^2\partial t}\right) =0, \end{aligned}$$
(C.3)
$$\begin{aligned}&\left( M+m\right) \frac{\partial ^2 w}{\partial t^2}+2MU\frac{\partial ^2 w}{\partial x\partial t}+MU^2\frac{\partial ^2 w}{\partial x^2}\nonumber \\&\quad +M\frac{\partial U}{\partial t}\frac{\partial ^2 w}{\partial x^2}\left( L-x\right) +EI\frac{\partial ^4 w}{\partial x^4}+\alpha EI\frac{\partial ^5 w}{\partial x^4\partial t}\nonumber \\&\quad -EA\left[ \frac{\partial u}{\partial x}\frac{\partial ^2 w}{\partial x^2}+\frac{\partial ^2 u}{\partial x^2}\frac{\partial w}{\partial x}+\frac{3}{2}\left( \frac{\partial w}{\partial x}\right) ^2\frac{\partial ^2 w}{\partial x^2}\right] \nonumber \\&\quad -\alpha EA\left[ \frac{\partial ^2 u}{\partial x\partial t}\frac{\partial ^2 w}{\partial x^2}+\frac{\partial ^3 u}{\partial x^2\partial t}\frac{\partial w}{\partial x}+\frac{\partial u}{\partial x}\frac{\partial ^3 w}{\partial x^2\partial t}\right. \nonumber \\&\quad \left. +2\frac{\partial w}{\partial x}\frac{\partial ^2 w}{\partial x\partial t}\frac{\partial ^2 w}{\partial x^2}+\frac{3}{2}\left( \frac{\partial w}{\partial x}\right) ^2\frac{\partial ^3 w}{\partial x^2\partial t}\right] \nonumber \\&\quad -\left( T_0-P\right) |_{x=L}\frac{\partial ^2 w}{\partial x^2}+\left( M+m\right) \text {g}\text {sin}\chi \nonumber \\&\quad +\left( M+m\right) \text {g}\text {cos}\chi \left[ \frac{\partial w}{\partial x}+\frac{\partial ^2 w}{\partial x^2}\left( L-x\right) \right] =F. \end{aligned}$$
(C.4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Guo, Y., Zhao, T. et al. Nonlinear dynamics of inclined viscoelastic pipes subjected to pulsatile flow and multi-harmonic excitations. Nonlinear Dyn 111, 11823–11849 (2023). https://doi.org/10.1007/s11071-023-08453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08453-3

Keywords

Navigation