Skip to main content
Log in

Breathers and higher order rogue waves on the double-periodic background for the nonlocal Gerdjikov–Ivanov equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Through Darboux transformation (DT) method, the breathers and the rogue waves on the double-periodic background of the nonlocal Gerdjikov–Ivanov (GI) equation are derived. First, we use the odd-fold DT, the even-fold DT and the plane wave seed solution to obtain some novel solutions for the nonlocal GI equation. These solutions include single- and double-periodic wave, one-breather, and one-breather on the single- or the double-periodic background. Second, we construct the odd-fold semi-degenerate DT and the even-fold semi-degenerate DT to find the higher-order rogue waves on the single-periodic and the double-periodic background, respectively. Finally, the dynamics of above mentioned solutions are analysed graphically by choosing appropriate parametric values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. Moslem, W.M., Shukla, P.K., Eliasson, B.: Surface plasma rogue waves. EPL 96(2), 25002 (2011)

    Article  Google Scholar 

  2. Shen, J., Geng, X.G., Xue, B.: Modulation instability and dynamics for the Hermitian symmetric space derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 78, 104877 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Geng, X.G., Shen, J., Xue, B.: A Hermitian symmetric space Fokas–Lenells equation: solitons, breathers, rogue waves. Ann. Phys. 404, 115–131 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Solli, D.R., Ropers, C., Koonath, P.: Optical rogue waves. Nature 450(7172), 1054–1057 (2007)

    Article  Google Scholar 

  5. Draper, L.: ‘Freak’ ocean waves. Weather 21(1), 2–4 (1966)

    Article  Google Scholar 

  6. Ed, K.: Integrability of Nonlinear Systems Lectures. Springer, Berlin (2004)

    Google Scholar 

  7. Guo, B., Ling, L., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85(2), 026607 (2012)

    Article  Google Scholar 

  8. Zhaqilao, Z.: Nth-order rogue wave solutions of the complex modified Korteweg-de Vries equation. Phys Scr. 87(6), 065401 (2013)

    Article  Google Scholar 

  9. Zhaqilao, Z.: On Nth-order rogue wave solution to nonlinear coupled dispersionless evolution equations. Phys. Lett. A. 376(45), 3121–3128 (2012)

    Article  MathSciNet  Google Scholar 

  10. Konno, K., Wadati, M.: Simple derivation of Bäcklund transformation from Riccati form of inverse method. Prog. Theor. Phys. 53(6), 1652–1656 (1975)

    Article  MATH  Google Scholar 

  11. Zhang, Y., Cheng, Y., He, J.: Riemann–Hilbert method and N-soliton for two-component Gerdjikov–Ivanov equation. J. Nonlinear Math. Phys. 24(2), 210–223 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, L., Li, X., Qi, F.H.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell–Bloch equations. Ann. Phys. 359, 97–114 (2015)

    Article  MATH  Google Scholar 

  13. Jin, X.W., Lin, J.: Rogue wave, interaction solutions to the KMM system. J. Magn. Magn. Mater. 502, 166590 (2020)

    Article  Google Scholar 

  14. Li, C., He, J., Porsezian, K.: Rogue waves of the Hirota and the Maxwell–Bloch equations. Phys. Rev. E 87(1), 012913 (2013)

    Article  Google Scholar 

  15. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Spec. Top. 223(1), 43–62 (2014)

    Article  Google Scholar 

  16. Chen, F., Zhang, H.Q.: Rogue waves on the periodic background in the higher-order modified Korteweg–de Vries equation. Mod. Phys. Lett. B 35(04), 2150081 (2021)

    Article  MathSciNet  Google Scholar 

  17. Li, R., Geng, X.: Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peng, W.Q., Tian, S.F., Wang, X.B.: Characteristics of rogue waves on a periodic background for the Hirota equation. Wave Motion 93, 102454 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, J., Pelinovsky, D.E.: Periodic travelling waves of the modified KdV equation and rogue waves on the periodic background. J. Nonlinear Sci. 29(6), 2797–2843 (2019)

  20. Wang, Z.J., Zhaqilao, W.-P.: Rogue wave solutions for the generalized fifth-order nonlinear Schrödinger equation on the periodic background. Wave Motion. 108, 102839 (2022)

  21. Shi, W., Zhaqilao: Rogue waves of the sixth-order nonlinear Schrödinger equation on a periodic background. Commun. Theor. Phys. 74(5), 055001 (2022)

    Article  Google Scholar 

  22. Zhang, H.Q., Gao, X., Pei, Z.: Rogue periodic waves in the fifth-order Ito equation. Appl. Math. Lett. 107, 106464 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Belokolos, E.D., Bobenko, A.I., Enolskii, V.Z.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  24. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Spec. Top. 223(1), 43–62 (2014)

    Article  Google Scholar 

  25. Peng, W.Q., Pu, J.C., Chen, Y.: PINN deep learning method for the Chen-Lee-Liu equation: rogue wave on the periodic background. Commun. Nonlinear Sci. Numer. Simul. 105, 106067 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ding, C.C., Gao, Y.T., Li, L.Q.: Breathers and rogue waves on the periodic background for the Gerdjikov–Ivanov equation for the Alfvén waves in an astrophysical plasma. Chaos Solitons Fractals 120, 259–265 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, W., Zhang, Y., He, J.: Rogue wave on a periodic background for Kaup–Newell equation. Rom. Rep. Phys. 70, 106 (2018)

    Google Scholar 

  28. Zhou, H., Chen, Y.: Breathers and rogue waves on the double-periodic background for the reverse-space-time derivative nonlinear Schrödinger equation. Nonlinear Dyn. 106(4), 3437–3451 (2021)

    Article  Google Scholar 

  29. Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27(3), 1393 (1983)

    Article  Google Scholar 

  30. Rogister, A.: Parallel propagation of nonlinear low-frequency waves in high-\(\beta \) plasma. Phys. Fluids 14(12), 2733–2739 (1971)

    Article  Google Scholar 

  31. Fan, E.: Integrable systems of derivative nonlinear Schrödinger type and their multi-Hamiltonian structure. J. Phys. A Math. Theor. 34(3), 513 (2001)

    MATH  Google Scholar 

  32. Ji, T., Zhai, Y.: Soliton, breather and rogue wave solutions of the coupled Gerdjikov–Ivanov equation via Darboux transformation. Nonlinear Dyn. 101(1), 619–631 (2020)

    Article  Google Scholar 

  33. Xu, S., He, J.: The rogue wave and breather solution of the Gerdjikov–Ivanov equation. J. Math. Phys. 53(6), 063507 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lou, Y., Zhang, Y., Ye, R.: Modulation instability, higher-order rogue waves and dynamics of the Gerdjikov–Ivanov equation. Wave Motion 106, 102795 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guo, L., Zhang, Y., Xu, S.: The higher order rogue wave solutions of the Gerdjikov–Ivanov equation. Phys. Scr. 89(3), 035501 (2014)

    Article  Google Scholar 

  36. Meng, D.X., Li, K.Z.: Darboux transformation of the second-type nonlocal derivative nonlinear Schrödinger equation. Mod. Phys. Lett. B 33(10), 1950123 (2019)

    Article  Google Scholar 

  37. Li, M., Zhang, Y., Ye, R.: Exact solutions of the nonlocal Gerdjikov–Ivanov equation. Commun. Theor. Phys. 73(10), 105005 (2021)

    Article  MathSciNet  Google Scholar 

  38. Fan, E.: A Liouville integrable Hamiltonian system associated with a generalized Kaup–Newell spectral problem. Phys. A 301(1–4), 105–113 (2001)

  39. Fan, E.: Integrable systems of derivative nonlinear Schrödinger type and their multi-Hamiltonian structure. J. Phys. A: Math. Gen. 34(3), 513 (2001)

    Article  MATH  Google Scholar 

  40. Imai, K.: Generalization of the Kaup–New inverse scattering formulation and Darboux transformation. J. Phys. Soc. Jpn. 68(2), 355–359 (1999)

    Article  MATH  Google Scholar 

  41. Geng, X., Wang, K., Chen, M.: Long-time asymptotics for the spin-1 Gross–Pitaevskii equation. Commun. Math. Phys. 382, 585–611 (2021)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11861050 and 11261037), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2020LH01010 and 2022ZD05), the Fundamental Research Funds for the Inner Mongolia Normal University (Grant No. 2022JBTD007, 2022JBXC013), and Graduate Students’ Research and Innovation fund of Inner Mongolia Normal University (Grant Nos. CXJJB22010, CXJJS21119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaqilao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Zhaqilao Breathers and higher order rogue waves on the double-periodic background for the nonlocal Gerdjikov–Ivanov equation. Nonlinear Dyn 111, 10459–10472 (2023). https://doi.org/10.1007/s11071-023-08387-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08387-w

Keywords

Navigation