Skip to main content
Log in

Wave structures and the chaotic behaviors of the cubic-quartic nonlinear Schrödinger equation for parabolic law in birefringent fibers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study the cubic-quartic nonlinear Schrödinger equation for the parabolic law through birefringent fibers by the complete discrimination system for polynomial method and obtain the solutions, dynamic system and chaotic behaviors of cubic-quartic nonlinear Schrödinger equation. Firstly, we verify the existence of solitons and periodic solutions by complete discrimination system for polynomial method. In order to confirm our findings, we show the corresponding solutions and construct some new solutions, which makes our conclusion more complete. In particular, we consider the perturbed form of the cubic-quartic complete discrimination system for polynomial method and show the chaotic behaviors of the equation via the largest Lyapunov exponents and the corresponding phase diagrams. As far as we know, the chaotic behaviors of cubic-quartic nonlinear Schrödinger equation are firstly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Zhang, S., Dong, L., Ba, J.M., Sun, Y.N.: The \(\frac{G^{\prime }}{G}\)-expansion method for nonlinear differential-difference equations. Phys. Lett. A 373(10), 905–910 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Makinde, O.D., Mhone, P.Y.: Hermite-Padé approximation approach to MHD Jeffery-Hamel flows. Appl. Math. Comput. 181, 966–972 (2006)

    Article  MATH  Google Scholar 

  3. Wazwaz, A.M.: The tanh method for traveling wave solutions of nonlinear equations. Appl. Math. Comput. 154, 713–723 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. El-Tantawy, S.A.: Ion-acoustic waves in ultracold neutral plasmas: modulational instability and dissipative rogue waves. Phys. Lett. A 381(8), 787–791 (2017)

    Article  MathSciNet  Google Scholar 

  5. Helal, M.A.: Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics. Chaos Solitons Fract. 13(9), 1917–1929 (2002)

  6. Malik, S., Hashemi, M.S., Kumar, S., et al.: Application of new Kudryashov method to various nonlinear partial differential equations. Opt. Quant. Electron. 55(1), 1–13 (2023)

    Article  Google Scholar 

  7. Akbar, M.A., Wazwaz, A.M., Mahmud, F., et al.: Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme. Results Phys. 43, 106079 (2022)

    Article  Google Scholar 

  8. Park, C., Nuruddeen, R.I., Ali, K.K., et al.: Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg-de Vries equations. Adv. Contin. Discrete Models 1, 627 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Eslami, M.: Solitary wave solutions for perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity under the DAM. Optik 126, 1312–1317 (2015)

    Article  Google Scholar 

  10. Özgül, S., Turan, M., Yıldırım, A.: Exact traveling wave solutions of peturbed nonlinear Schrödinger’s equation (NLSE) with Kerr law nonlinearity. Optik 123, 2250–2253 (2012)

    Article  Google Scholar 

  11. Kohl, R.W., Biswas, A., Zhou, Q., Ekici, M., et al.: Optical soliton perturbation with polynomial and triple-power laws of refractive index by semi-inverse variational principle. Chaos Solitons Fract. 135, 109765 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Biswas, A., Milovic, D.: Optical solitons in a parabolic law media with fourth order dispersion. Appl. Math. Comput. 208(1), 299–302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Biswas, A.: Perturbation of solitons due to power law nonlinearity. Chaos Solitons Fract. 12(3), 579–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Raza, N., Javid, A.: Optical dark and singular solitons to the Biswas-Milovic equation in nonlinear optics with spatio-temporal dispersion. Optik 158, 1049–1057 (2018)

    Article  Google Scholar 

  15. Zahran, E.H.M., Bekir, A.: Accurate impressive optical soliton to the nonlinear refractive index cubic-quartic through birefringent fibers. Opt. Quant. Electron. 54, 253 (2022)

    Article  Google Scholar 

  16. Bansal, A., Biswas, A., Zhou, Q., et al.: Lie symmetry analysis for cubic-quartic nonlinear Schrödinger’s equation. Optik 169, 12–15 (2018)

    Article  Google Scholar 

  17. Inui, K., Nohara, B.T., Yamano, T., Arimoto, A.: On solitons of standing wave solutions for the cubic-quartic nonlinear Schrödinger equation. Kyoto Univ. Res. Inform. Repos. 1637, 145–156 (2009)

    Google Scholar 

  18. Liu, C.: Exact solutions for the higher-order nonlinear Schrödinger equation in nonlinear optical fbres. Chaos Solitons Fract. 23, 949–955 (2005)

    Article  MATH  Google Scholar 

  19. Xiao, L.L., Liang, W.M.: The \(\frac{G^{\prime }}{G}\)-expansion method and travelling wave solutions for a higher-order nonlinear Schrödinger equation. Appl. Math. Comput. 208, 440–445 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zayed, E.M.E., El-Horbaty, M., Alngar, M.E.M.: Cubic-quartic optical soliton perturbation having four laws nonlinearity with a prolific integration algorithm. Optik 220, 165121 (2020)

    Article  Google Scholar 

  21. Rezazadeh, H., Neirameh, A., Eslami, M., et al.: A sub-equation method for solving the cubic-quartic NLSE with the Kerr law nonlinearity. Mod. Phys. Lett. B 33(18), 1950197 (2019)

  22. Zayed, E.M.E., Gepreel, K.A., Alngar, M.E.M.: Addendum to Kudryashov’s method for finding solitons in magneto-optics waveguides to cubic-quartic NLSE with Kudryashov’s sextic power law of refractive index. Optik 230, 166311 (2021)

    Article  Google Scholar 

  23. Kohl, R.W., Biswas, A., Ekici, M., et al.: Cubic-quartic optical soliton perturbation by semi-inverse variational principle. Optik 185, 45–49 (2019)

    Article  Google Scholar 

  24. González-Gaxiola, O., Biswas, A., Mallawi, F., et al.: Cubic-quartic bright optical solitons with improved Adomian decomposition method. J. Adv. Res. 169, 12–15 (2018)

    Google Scholar 

  25. Liu, C.S.: Canonical-like transformation method and exact solutions to a class of diffusion equations. Chaos Soliton Fract. 42(1), 441–446 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Y.X.: Study of the complex Ginzburg–Landau equation with parabolic law nonlinearity by the complete discrimination system for polynomial method. Optik 257, 168750 (2022)

    Article  Google Scholar 

  27. Hu, X., Yin, Z.X.: Dynamic properties and optical wave patterns of a high-order nonlinear Schrödinger equation with weak non-local nonlinearity. Optik 261, 169220 (2022)

    Article  Google Scholar 

  28. Liu, Y.: Exact solutions to nonlinear Schrödinger equation with variable coefficients. Appl. Math. Comput. 217(12), 5866–5869 (2010)

    Article  MATH  Google Scholar 

  29. Yin, Z.X.: Chirped envelope solutions of short pulse propagation in highly nonlinear optical fiber. Optik 242, 167318 (2021)

    Article  Google Scholar 

  30. Kai, Y., Chen, S., Zheng, B., et al.: Qualitative and quantitative analysis of nonlinear dynamics by the complete discrimination system for polynomial method. Chaos Solitons Fract. 141, 110314 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kai, Y., Chen, S., Zhang, K., et al.: A study of the shallow water waves with some Boussinesq-type equations. Waves Random Complex Media 1–18 (2021). https://doi.org/10.1080/17455030.2023.2172231

  32. Cao, C.W.: A qualitative test for single soliton solution. J. Zhengzhou Univ. (Nat. Sci. Ed.) 2, 3–7 (1984)

    Google Scholar 

  33. Hu, X., Yin, Z.X.: A study of the pulse propagation with a generalized Kudryashov equation. Chaos Solitons Fract. 161, 112379 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Kai.

Ethics declarations

Conflict interest

I would like to declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Kai, Y. Wave structures and the chaotic behaviors of the cubic-quartic nonlinear Schrödinger equation for parabolic law in birefringent fibers. Nonlinear Dyn 111, 8701–8712 (2023). https://doi.org/10.1007/s11071-023-08291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08291-3

Keywords

Navigation