Skip to main content
Log in

Analysis of stochastic resonance in coupled oscillator with fractional damping disturbed by polynomial dichotomous noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Investigation on particle synchronization behavior and different kinds of stochastic resonance mechanism is reported in a fractional-order stochastic coupled system, which endures an external periodic excitation and polynomial asymmetric dichotomous noise damping disturbance. An extending of the method of stochastic averaging, the fractional Shapiro–Loginov formula and fractional Laplace transformation law are utilized, to determine the synchronization behavior between two coupled oscillators. The first moment of steady-state response and the output signal amplitude of the system are obtained in an analytical way, along with the stability condition. The crucial role of damping order and intrinsic frequency in stochastic resonance induced by noise intensity is explored, confirming the necessity of studying damping order falling in (1, 2). Due to the presence of nonlinear dichotomous colored noise, fresh phenomena of stochastic resonance and hypersensitive response induced by variation of external excitation frequency are found, where much more novel dynamical behaviors emerge than the non-disturbance case. It is confirmed that bimodal stochastic resonance only occurs for slow switching noise, with the damping order close to the parameter region of 0 or 2. For parameter-induced generalized stochastic resonance, explicit expressions of the critical damping strength corresponding to the optimal peak point of output amplitude are derived for the first time. By which different stochastic resonance patterns of the system under slow and fast switching noise perturbation are predicted successfully. In addition, the parametric effect and action mechanism of damping order on stochastic resonance are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Xu, P., Jin, Y.: Stochastic resonance in multi-stable coupled systems driven by two driving signals. Physica A 492, 1281–1289 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bi, H., Lei, Y., Han, Y.: Stochastic resonance across bifurcations in an asymmetric system. Physica A 525, 1296–1312 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Silva, I.G., Korneta, W., Stavrinides, S.G., et al.: Observation of stochastic resonance for weak periodic magnetic field signal using a chaotic system. Commun. Nonlinear Sci. Numer. Simul. 94, 105558 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wu, C., Lv, S., Long, J., et al.: Self-similarity and adaptive aperiodic stochastic resonance in a fractional-order system. Nonlinear Dyn. 91(3), 1697–1711 (2018)

    Article  Google Scholar 

  5. Xu, Y., Guo, Y., Ren, G., et al.: Dynamics and stochastic resonance in a thermosensitive neuron. Appl. Math. Comput. 385, 125427 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Zhang, G., Shi, J., Zhang, T.: Stochastic resonance in an under-damped linear system with nonlinear frequency fluctuation. Physica A 512, 230–240 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mondal, S., Das, J., Bag, B.C., et al.: Autonomous stochastic resonance driven by colored noise. Phys. Rev. E 98(1), 012120 (2018)

    Article  Google Scholar 

  8. Aghili, A.: Complete solution for the time fractional diffusion problem with mixed boundary conditions by operational method. Appl. Math. Nonlinear Sci. 6(1), 9–20 (2021)

    Article  MathSciNet  Google Scholar 

  9. Singh, J., Ganbari, B., Kumar, D., et al.: Analysis of fractional model of guava for biological pest control with memory effect. J. Adv. Res. 32, 99–108 (2021)

    Article  Google Scholar 

  10. Qi, X., Li, H., Chen, B., et al.: A prediction model of urban counterterrorism based on stochastic strategy. Appl. Math. Nonlinear Sci. 6(1), 263–268 (2021)

    Article  Google Scholar 

  11. Failla, G., Zingales, M.: Advanced materials modelling via fractional calculus: challenges and perspectives. Philos. Trans. R. Soc. A 378(2172), 20200050 (2020)

    Article  Google Scholar 

  12. Feddaoui, A., Llibre, J., Berhail, C., et al.: Periodic solutions for differential systems in ℝ 3 and ℝ 4. Appl. Math. Nonlinear Sci. 6(1), 373–380 (2021)

    Article  MathSciNet  Google Scholar 

  13. Shen, L.J.: Fractional derivative models for viscoelastic materials at finite deformations. Int. J. Solids Struct. 190, 226–237 (2020)

    Article  Google Scholar 

  14. Evangelista, L.R., Lenzi, E.K.: Fractional Diffusion Equations and Anomalous Diffusion. Cambridge University Press, Cambridge (2018)

    Book  MATH  Google Scholar 

  15. Haque, B.M.I., Flora, S.A.: On the analytical approximation of the quadratic non-linear oscillator by modified extended iteration method. Appl. Math. Nonlinear Sci. 6(1), 527–536 (2021)

    Article  MathSciNet  Google Scholar 

  16. Varanis, M.V., Tusset, A.M., Balthazar, J.M., et al.: Dynamics and control of periodic and non-periodic behavior of Duffing vibrating system with fractional damping and excited by a non-ideal motor. J. Frankl. Inst. 357(4), 2067–2082 (2020)

    Article  MATH  Google Scholar 

  17. Cinlar, E.: Introduction to Stochastic Processes. Courier Corporation, New Jersey (2013)

    MATH  Google Scholar 

  18. Wang, B.: Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise. J. Differ. Equ. 268(1), 1–59 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, L., Zhong, S.C., Peng, H., et al.: Stochastic multi-resonance in a linear system driven by multiplicative polynomial dichotomous noise. Chin. Phys. Lett. 28(9), 090505 (2011)

    Article  Google Scholar 

  20. Kaur, D., Agarwal, P., Rakshit, M., et al.: Fractional calculus involving (p, q)-Mathieu type series. Appl. Math. Nonlinear Sci. 5(2), 15–34 (2020)

    Article  MathSciNet  Google Scholar 

  21. Boccaletti, S., Pisarchik, A.N., Del Genio, C.I., et al.: Synchronization: from Coupled Systems to Complex Networks. Cambridge University Press, Cambridge (2018)

    Book  MATH  Google Scholar 

  22. Touchent, K.A., Hammouch, Z., Mekkaoui, T.: A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives. Appl. Math. Nonlinear Sci. 5(2), 35–48 (2020)

    Article  MathSciNet  Google Scholar 

  23. Caponetto, R.: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore (2010)

    Book  Google Scholar 

  24. Yan, Z., Wang, W., Liu, X.B.: Analysis of a quintic system with fractional damping in the presence of vibrational resonance. Appl. Math. Comput. 321, 780–793 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Fang, Y., Luo, Y., Zeng, C.: Dichotomous noise-induced negative mass and mobility of inertial Brownian particle. Chaos Solitons Fractals 155, 111775 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gitterman, M.: Oscillator with random mass. World J. Mech. 2, 113–124 (2012)

    Article  Google Scholar 

  27. Kanna, M.R.R., Kumar, R.P., Nandappa, S., et al.: On solutions of fractional order telegraph partial differential equation by Crank-Nicholson finite difference method. Appl. Math. Nonlinear Sci. 5(2), 85–98 (2020)

    Article  MathSciNet  Google Scholar 

  28. Mandrysz, M., Dybiec, B.: Energetics of single-well undamped stochastic oscillators. Phys. Rev. E 99(1), 012125 (2019)

    Article  Google Scholar 

  29. Onal, M., Esen, A.: A Crank-Nicolson approximation for the time fractional Burgers equation. Appl. Math. Nonlinear Sci. 5(2), 177–184 (2020)

    Article  MathSciNet  Google Scholar 

  30. Yang, B., Zhang, X., Zhang, L., Luo, M.K.: collective behavior of globally coupled Langevin equation with colored noise in the presence of stochastic resonance. Phys. Rev. E. 94, 022119 (2016)

    Article  MathSciNet  Google Scholar 

  31. Zhong, S., Lv, W., Ma, H., et al.: Collective stochastic resonance behavior in the globally coupled fractional oscillator. Nonlinear Dyn. 94(2), 905–923 (2018)

    Article  Google Scholar 

  32. Shapiro, V.E., Loginov, V.M.: “Formulae of differentiation” and their use for solving stochastic equations. Physica A 91(3–4), 563–574 (1978)

    Article  MathSciNet  Google Scholar 

  33. Li, C.P., Zeng, F.: Numerical Methods for Fractional Calculus. CRC Press, Shanghai (2015)

    Book  MATH  Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  35. Lynch, V.E., Carreras, B.A., del Castillo-Negrete, D., et al.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192(2), 406–421 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Butcher, J.: Runge–Kutta methods. Scholarpedia 2(9), 3147 (2007)

    Article  Google Scholar 

  37. Gammaitoni, L., Hänggi, P., Jung, P., et al.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223 (1998)

    Article  Google Scholar 

  38. Gao, S.L.: Generalized stochastic resonance in a linear fractional system with random delay. J. Stat. Mech: Theory Exp. 2012(12), 012011 (2012)

    Article  MathSciNet  Google Scholar 

  39. Jarad, F., Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst. S 13(3), 709 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kuhfittig, P.K.F.: Introduction to the Laplace Transform. Springer, New York (2013)

    MATH  Google Scholar 

  41. Kempfle, S., Schäfer, I., Beyer, H.: Fractional calculus via functional calculus: theory and applications. Nonlinear Dyn. 29(1–4), 99–127 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Luef, F., Skrettingland, E.: A Wiener Tauberian theorem for operators and functions. J. Funct. Anal. 280(6), 108883 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Girod, B., Rabenstein, R., Stenger, A.: Signals and Systems. Tsinghua University, Wiley, New York (2001)

    Google Scholar 

  44. Gitterman, M.: Classical harmonic oscillator with multiplicative noise. Physica A 352(2–4), 309–334 (2005)

    Article  MathSciNet  Google Scholar 

  45. Escotet-Espinoza, M.S., Moghtadernejad, S., Oka, S., et al.: Effect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: application of models. Powder Technol. 344, 525–544 (2019)

    Article  Google Scholar 

  46. Yang, J.H., Sanjuán, M.A.F., Liu, H.G., et al.: Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system. Commun. Nonlinear Sci. Numer. Simul. 41, 104–117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gammaitoni, L., Marchesoni, F., Santucci, S.: Stochastic resonance as a bona fide resonance. Phys. Rev. Lett. 74(7), 1052 (1995)

    Article  Google Scholar 

  48. Zhong, S., Wei, K., Gao, S., et al.: Trichotomous noise induced resonance behavior for a fractional oscillator with random mass. J. Stat. Phys. 159(1), 195–209 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Huang, X., Lin, L., Wang, H.: Generalized stochastic resonance for a fractional noisy oscillator with random mass and random damping. J. Stat. Phys. 178(5), 1201–1216 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tian, Y., Zhong, L.F., He, G.T., et al.: The resonant behavior in the oscillator with double fractional-order damping under the action of nonlinear multiplicative noise. Physica A 490, 845–856 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No.12002194; No.12072178); Project No.ZR2020MA054 supported by Shandong Provincial Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huatao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Guirao, J.L.G., Saeed, T. et al. Analysis of stochastic resonance in coupled oscillator with fractional damping disturbed by polynomial dichotomous noise. Nonlinear Dyn 110, 1233–1251 (2022). https://doi.org/10.1007/s11071-022-07688-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07688-w

Keywords

Navigation