Skip to main content
Log in

A machine learning method for computing quasi-potential of stochastic dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The concept of quasi-potential plays a central role in understanding the mechanisms of rare events and characterizing the statistics of transition behaviors in stochastic dynamics. Despite its significance, the computation of quasi-potential is a challenging problem with limited existing techniques. In this paper, we devise a machine learning method to compute the quasi-potential of stochastic dynamical systems. More specifically, we first derive the Hamilton-Jacobi equation satisfied by quasi-potential via WKB approximation for two important classes of stochastic processes: diffusion processes and continuous-time jump Markov processes. Then we design a neural network with automatic differentiation technique to compute the quasi-potential based on the Hamilton-Jacobi equation. Two prototypical examples are presented to demonstrate the efficacy and accuracy of our method for stochastic differential equations with additive and multiplicative Gaussian noise and continuous-time jump Markov processes. This approach provides an effective tool in exploring the internal mechanisms of rare events triggered by random perturbations in various scientific fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Allen, R.J., Warren, P.B., Ten Wolde, P.R.: Sampling rare switching events in biochemical networks. Phys. Rev. Lett. 94(1), 018104 (2005)

    Article  Google Scholar 

  2. Beri, S., Mannella, R., Luchinsky, D.G., Silchenko, A., McClintock, P.V.: Solution of the boundary value problem for optimal escape in continuous stochastic systems and maps. Phys. Rev. E 72(3), 036131 (2005)

    Article  MathSciNet  Google Scholar 

  3. Boninsegna, L., Nüske, F., Clementi, C.: Sparse learning of stochastic dynamical equations. J Chem. Phys. 148(24), 241723 (2018)

    Article  Google Scholar 

  4. Bressloff, P.C., Newby, J.M.: Path integrals and large deviations in stochastic hybrid systems. Phys. Rev. E 89(4), 042701 (2014)

    Article  Google Scholar 

  5. Cameron, M.: Finding the quasipotential for nongradient sdes. Physica D: Nonlinear Phenomena 241(18), 1532–1550 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chen, X., Wu, F., Duan, J., Kurths, J., Li, X.: Most probable dynamics of a genetic regulatory network under stable lévy noise. Appl. Math. Comput. 348, 425–436 (2019)

  7. Chen, X., Yang, L., Duan, J., Karniadakis, G.E.: Solving inverse stochastic problems from discrete particle observations using the fokker-planck equation and physics-informed neural networks. SIAM J. Sci. Comput. 43(3), B811–B830 (2021)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z., Liu, X.: Singularities of fluctuational paths for an overdamped two-well system driven by white noise. Phys A: Stat. Mech. Appl. 469, 206–215 (2017)

    Article  MathSciNet  Google Scholar 

  9. Chen, Z., Zhu, J., Liu, X.: Non-differentiability of quasi-potential and non-smooth dynamics of optimal paths in the stochastic morris-lecar model: Type i and ii excitability. Nonlinear Dyn. 96(4), 2293–2305 (2019)

    Article  Google Scholar 

  10. Dahiya, D., Cameron, M.: Ordered line integral methods for computing the quasi-potential. J. Sci. Comput. 75(3), 1351–1384 (2018)

    Article  MathSciNet  Google Scholar 

  11. Dai, M., Gao, T., Lu, Y., Zheng, Y., Duan, J.: Detecting the maximum likelihood transition path from data of stochastic dynamical systems. Chaos 30, 113124 (2020)

    Article  MathSciNet  Google Scholar 

  12. Dykman, M.I., Millonas, M.M., Smelyanskiy, V.N.: Observable and hidden singular features of large fluctuations in nonequilibrium systems. Phys. Lett. A 195(1), 53–58 (1994)

    Article  MathSciNet  Google Scholar 

  13. Dykman, M.I., Mori, E., Ross, J., Hunt, P.: Large fluctuations and optimal paths in chemical kinetics. J. Chem. Phys. 100(8), 5735–5750 (1994)

    Article  Google Scholar 

  14. Ge, H., Qian, H.: Analytical mechanics in stochastic dynamics: most probable path, large-deviation rate function and hamilton-jacobi equation. Int. J. Modern Phys. B 26(24), 1230012 (2012)

    Article  MathSciNet  Google Scholar 

  15. Grafke, T., Vanden-Eijnden, E.: Numerical computation of rare events via large deviation theory. Chaos 29(6), 063118 (2019)

    Article  MathSciNet  Google Scholar 

  16. Heymann, M., Vanden-Eijnden, E.: The geometric minimum action method: a least action principle on the space of curves. Commun. Pure Appl. Math. 61(8), 1052–1117 (2008)

    Article  MathSciNet  Google Scholar 

  17. Iswarya, M., Raja, R., Rajchakit, G., Cao, J., Alzabut, J., Huang, C.: A perspective on graph theory-based stability analysis of impulsive stochastic recurrent neural networks with time-varying delays. Adv. Diff. Equ. 2019(1), 1–21 (2019)

    Article  MathSciNet  Google Scholar 

  18. Klus, S., Nüske, F., Peitz, S., Niemann, J.H., Clementi, C., Schütte, C.: Data-driven approximation of the koopman generator: Model reduction, system identification, and control. Physica D: Nonlinear Phenomena 406, 132416 (2020)

    Article  MathSciNet  Google Scholar 

  19. Li, Y., Duan, J.: A data-driven approach for discovering stochastic dynamical systems with non-gaussian lévy noise. Physica D: Nonlinear Phenomena 417, 132830 (2021)

    Article  Google Scholar 

  20. Li, Y., Duan, J., Liu, X.: Machine learning framework for computing the most probable paths of stochastic dynamical systems. Phys. Rev. E 103(1), 012124 (2021)

    Article  MathSciNet  Google Scholar 

  21. Li, Y., Liu, X.: Noise induced escape in one-population and two-population stochastic neural networks with internal states. Chaos 29(2), 023137 (2019)

    Article  MathSciNet  Google Scholar 

  22. Lin, B. Li, Q., Ren, W.: A data driven method for computing quasipotentials. arXiv preprint arXiv:2012.09111, 2020

  23. Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems. Springer, Berlin (2012)

    Book  Google Scholar 

  24. Maier, R.S., Stein, D.L.: Effect of focusing and caustics on exit phenomena in systems lacking detailed balance. Phys. Rev. Lett. 71(12), 1783 (1993)

    Article  Google Scholar 

  25. Maier, R.S., Stein, D.L.: A scaling theory of bifurcations in the symmetric weak-noise escape problem. J. Stat. Phys. 83(3), 291–357 (1996)

    Article  MathSciNet  Google Scholar 

  26. Manickam, I., Ramachandran, R., Rajchakit, G., Cao, J., Huang, C.: Novel lagrange sense exponential stability criteria for time-delayed stochastic cohen-grossberg neural networks with markovian jump parameters: a graph-theoretic approach. Nonlinear Anal.: Model. Control 25(5), 726–744 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  28. Smelyanskiy, V., Dykman, M., Maier, R.: Topological features of large fluctuations to the interior of a limit cycle. Phys. Rev. E 55(3), 2369 (1997)

    Article  MathSciNet  Google Scholar 

  29. Tindjong, R., Kaufman, I., Luchinsky, D.G., McClintock, P.V., Khovanov, I.A., Eisenberg, R.: Non-equilibrium stochastic dynamics of open ion channels. Nonlinear Phenom. Complex Syst. 16(2), 146–161 (2013)

    MathSciNet  Google Scholar 

  30. Yang X., Huang C., Yang Z.: Stochastic synchronization of reaction-diffusion neural networks under general impulsive controller with mixed delays. In: Abstract and applied analysis, volume 2012. Hindawi, 2012

  31. Zhang, Y., Duan, J., Jin, Y., Li, Y.: Extracting non-gaussian governing laws from data on mean exit time. Chaos 30(11), 113112 (2020)

    Article  MathSciNet  Google Scholar 

  32. Zheng, Y., Yang, F., Duan, J., Sun, X., Fu, L., Kurths, J.: The maximum likelihood climate change for global warming under the influence of greenhouse effect and lévy noise. Chaos 30, 013132 (2020)

    Article  MathSciNet  Google Scholar 

  33. Zhou, X., Ren, W., Weinan, E.: Adaptive minimum action method for the study of rare events. J. Chem. Phys. 128(10), 104111 (2008)

    Article  Google Scholar 

  34. Zhou, Y., Wan, X., Huang, C., Yang, X.: Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control. Appl. Math. Comput. 376, 125157 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Zhu, W., Wu, Y.: First-passage time of duffing oscillator under combined harmonic and white-noise excitations. Nonlinear Dyn. 32(3), 291–305 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Xiaoli Chen for helpful discussions.

Funding

This work was supported by the NSFC 62073166, 61673215, the 333 Project, and the Key Laboratory of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyuan Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, S., Duan, J. et al. A machine learning method for computing quasi-potential of stochastic dynamical systems. Nonlinear Dyn 109, 1877–1886 (2022). https://doi.org/10.1007/s11071-022-07536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07536-x

Keywords

Mathematics Subject Classification

Navigation