Skip to main content
Log in

MILM hybrid identification method of fractional order neural-fuzzy Hammerstein model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Aiming at the difficult identification of fractional order Hammerstein nonlinear systems, including many identification parameters and coupling variables, unmeasurable intermediate variables, difficulty in estimating the fractional order, and low accuracy of identification algorithms, a multiple innovation Levenberg–Marquardt algorithm (MILM) hybrid identification method based on the fractional order neuro-fuzzy Hammerstein model is proposed. First, a fractional order discrete neuro-fuzzy Hammerstein system model is constructed; secondly, the neuro-fuzzy network structure and network parameters are determined based on fuzzy clustering, and the self-learning clustering algorithm is used to determine the antecedent parameters of the neuro-fuzzy network model; then the multiple innovation principle is combined with the Levenberg–Marquardt algorithm, and the MILM hybrid algorithm is used to estimate the linear module parameters and fractional order. Finally, the academic example of the fractional order Hammerstein nonlinear system and the example of a flexible manipulator are identified to prove the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

At present, this paper completely describes the theoretical research and does not analyze the data set during the research period. The collection of data set is random according to different readers, but some codes can be provided by contacting the corresponding author.

References

  1. Abu Arqub, O.: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer. Methods Partial Differ. 34(5), 1759–1780 (2018)

    Article  MathSciNet  Google Scholar 

  2. Del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. Phys. Rev. Lett. 91(1), 018302 (2003)

    Article  Google Scholar 

  3. Written, T.A.: Insights from Soft Condensed Matter. Springer, Berlin (1999)

    Google Scholar 

  4. Dingyu, X.: Fractional Calculus and Fractional Control. Science Press, Beijing (2018)

    Google Scholar 

  5. Cheng, J.: Theory of Fractional Difference Equations. Xiamen University Press, Xiamen (2011)

    Google Scholar 

  6. Victor, S., Malti, R.: Parameter and differentiation order estimation in fractional models. Automatica 49(4), 926–935 (2013)

    Article  MathSciNet  Google Scholar 

  7. Fahim, S.M., Ahmed, S., Imtiaz, S.A.: Fractional order model identification using the sinusoidal input. ISA Trans. 83(1), 35–41 (2018)

    Article  Google Scholar 

  8. Karima, H., Tounsia, D., Maamar, B.: Identification of Fractional Hammerstein systems with application to a heating process. Nonlinear Dyn. 2, 10058 (2019)

    MATH  Google Scholar 

  9. Shalaby, R., Mohammad, E.H., Belal, A.Z.: Fractional order modeling and control for under-actuated inverted pendulum. Commun. Nonlinear Sci. Numer. Simul. (2019). https://doi.org/10.1016/j.cnsns.2019.02.023

    Article  MathSciNet  MATH  Google Scholar 

  10. Malti, R., Aoun, M., Oustaloup, A.: Systhesis of fractional kautz-like basis with two periodically repeating complex conjugate modes. In: Control, Communication and Signal Processing, First International Symposium (2004)

  11. Jonscher, A.K.: Dielectric relaxation in solids. J. Phys. D Appl. Phys. 32(14), 57–69 (1999)

    Article  Google Scholar 

  12. Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectrics Electr. Insulation. 1(5), 826–839 (1994)

    Article  Google Scholar 

  13. Cheng, T., Zhishan, L., Juqiu, Z.: Nonlinear control of fractional boost converter in pseudo-continuous mode of inductor current. Acta Physica Sinica. 25(1), 63–69 (2014)

    Google Scholar 

  14. Abuaisha, T., Kertzscher, J.: Fractional-order modeling and parameter identification of electrical coils. Fract. Calc. Appl. Anal. 22(1), 193–216 (2019)

    Article  MathSciNet  Google Scholar 

  15. Boubaker, S.: Identification of nonlinear Hammerstein system using mixed integer-real coded particle swarm optimization: application to the electric daily peak-load forecasting. Nonlinear Dyn. 90(2), 797–814 (2017)

    Article  Google Scholar 

  16. Hu, Y.S., Fan, Y., Wei, Y.H., Wang, Y., Liang, Q.: Subspace-based continuous-time identification for fractional order systems from non-uniformly sampled data. Int. J. Syst. Sci. 47(1), 122–134 (2016)

    Article  MathSciNet  Google Scholar 

  17. Wang, J., Wei, Y., Liu, T., Li, A., Wang, Y.: Fully parametric identication for continuous time fractional order Hammerstein systems. J. Franklin Inst. 357, 651–666 (2020)

    Article  MathSciNet  Google Scholar 

  18. Ding, F., Chen, T.W.: Identification of Hammerstein nonlinear ARMAX systems. Automatica 41(9), 1479–1489 (2005)

    Article  MathSciNet  Google Scholar 

  19. Gomez, J.C., Baeyens, E.: Subspace-based identification algorithms for Hammerstein and Wiener models. Eur. J. Control. 11(2), 127–136 (2005)

    Article  MathSciNet  Google Scholar 

  20. Bai, E.W., Li, D.: Convergence of the iterative Hammerstein system identification algorithm. IEEE Trans. Autom. Control 49(11), 1929–1940 (2004)

    Article  MathSciNet  Google Scholar 

  21. Narendra, K.S., Gallman, P.G.: An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans. Autom. Control 11(3), 546–550 (1966)

    Article  Google Scholar 

  22. Chen, H.F.: Pathwise convergence of recursive identification algorithms for Hammerstein systems. IEEE Trans. Autom. Control 49(10), 1641–1649 (2004)

    Article  MathSciNet  Google Scholar 

  23. Jing, X.J.: Frequency domain analysis and identification of blockoriented nonlinear systems. J. Sound Vib. 330(22), 5427–5442 (2011)

    Article  Google Scholar 

  24. Yu, C.P., Zhang, C.S., Xie, L.H.: Blind identification of non-minimum phase ARMA systems. Automatica 49(6), 1846–1854 (2013)

    Article  MathSciNet  Google Scholar 

  25. Zennir, Y., Elhadi, G., Riad, B.: Robust fractional multi-controller design of inverted pendulum system. In: 2016 20th International Conference on System Theory, Control and Computing (ICSTCC). IEEE. (2016)

  26. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Part II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  27. Monje, C.A., Chen, Y.Q., Vinagre, B.M., et al.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)

    Book  Google Scholar 

  28. De Moor, B., De Gersem, P., De Schutter, B., et al.: DAISY: a database for identification of systems. JOURNAL A. 38, 4–5 (1997)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant number 61863034) and the Autonomous Region Graduate Research and Innovation Project (Grant number XJ2019G060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Zhang or Chunlei Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with respect to the research, authorship, and/or publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, H. & Liu, C. MILM hybrid identification method of fractional order neural-fuzzy Hammerstein model. Nonlinear Dyn 108, 2337–2351 (2022). https://doi.org/10.1007/s11071-022-07303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07303-y

Keywords

Navigation