Skip to main content
Log in

Numerical and experimental analysis of the effect of eccentric phase difference in a rotor-bearing system with bolted-disk joint

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Bolted joints are widely used in industrial rotating machines to fasten the adjacent disks together and affect system dynamic properties. Therefore, there is a strong need to study their influence on the response of such systems. This paper investigated the effect of the eccentric phase difference of the disk and bolted-disk joint on rotor dynamics, which takes into account the time-varying bending stiffness of the bolted joint. The bolted-disk joint is modeled as a two-node element based upon the energy theorem and Lagrange’s principle, where the relative lateral displacement stiffness, relative bending stiffness, and coupling stiffness between the adjacent disks are considered. And then the dynamic model of the rotor-bearing system is derived based on the proposed bolted joint element and lumped mass modeling method. Combining with the Newmark-β integration scheme, the established model allows the dynamic response characteristics of the rotor-bearing system with the bolted joint to be predicted, and the impact of eccentric phase difference in the rotor system on the response to be investigated. The validity of the simulation results was confirmed by experiment. Through the modeling method proposed in this paper and obtained results, the bifurcation characteristics of the bolted joint rotor system can be predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability statement

Data will be made available on reasonable request.

Abbreviations

\(c\) :

Bearing clearance

c bl x :

Damping coefficient at left bearing in the x-direction

c bl y :

Damping coefficient at left bearing in the y-direction

c br x :

Damping coefficient at right bearing in the x-direction

c br y :

Damping coefficient at right bearing in the y-direction

\({\mathbf{C}}\) :

Damping matrix of the rotor system

\(e_{i} (i = 1,2,3)\) :

Eccentricity of disk i

E :

Young's modulus

\({\mathbf{G}}\) :

Gyroscopic matrix of the rotor system

I :

Moment of inertia

\(J_{{{\text{d}}i}} (i = 1,2, \ldots ,6)\) :

Diametral moment of inertia about any axis perpendicular to the rotor axis at point i

\(J_{{{\text{p}}i}} (i = 1,2, \ldots ,6)\) :

Polar mass moment of inertia about rotor axis at point i

\(k_{\theta }\) :

Bending stiffness of the bolted-disk joint

\(k_{\theta 1}\) :

Bending stiffness of the bolted-disk joint at the first bending stage

\(k_{\theta 2}\) :

Bending stiffness of the bolted-disk joint at the second bending stage

\(k_{{\text{s}}}\) :

Lateral stiffness of the bolted-disk joint

\({\mathbf{K}}\) :

Stiffness matrix of the rotor system

\(l_{i} (i = 1,2,3)\) :

Length of the shafts

\(m_{i} (i = 1,2, \ldots ,6)\) :

Lumped mass at point i

\({\mathbf{M}}\) :

Mass matrix of the rotor system

\({\mathbf{q}}_{{\text{d}}}\) :

Generalized displacement vector of the single disk

\({\mathbf{q}}_{{\text{J}}}\) :

Generalized displacement vector of the bolted-disk joint

\({\mathbf{q}}\) :

Generalized displacement vector of the rotor system

\({\mathbf{Q}}_{{\text{b}}}\) :

External force vector composed of bearing force

\({\mathbf{Q}}_{{\text{u}}}\) :

Generalized unbalanced force vector

\({\mathbf{Q}}_{{\text{g}}}\) :

Generalized gravity vector

\(\omega\) :

Rotational speed

\(\varphi_{i} (i = 1,2,3)\) :

Eccentric phase of disk i

\(\varPhi\) :

Relative rotation angle at the mating face of bolted joint

\(\varPhi_{{0}}\) :

Transition point of bending stiffness of bolted joint

References

  1. Hong, J., Chen, X., Wang, Y., Ma, Y.: Optimization of dynamics of non-continuous rotor based on model of rotor stiffness. Mech. Syst. Signal Process. 131, 166–182 (2019)

    Article  Google Scholar 

  2. Qin, Z., Yang, Z., Zu, J., Chu, F.: Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates. Int. J. Mech. Sci. 142–143, 127–139 (2018)

    Article  Google Scholar 

  3. Liu, S., Ma, Y., Zhang, D., Hong, J.: Studies on dynamic characteristics of the joint in the aero-engine rotor system. Mech. Syst. Signal Process. 29, 120–136 (2012)

    Article  Google Scholar 

  4. Li, Y., Luo, Z., Liu, Z., Hou, X.: Nonlinear dynamic behaviors of a bolted joint rotor system supported by ball bearings. Arch. Appl. Mech. 11(89), 2381–2395 (2019)

    Article  Google Scholar 

  5. Qin, Z.Y., Han, Q.K., Chu, F.L.: Analytical model of bolted disk-drum joints and its application to dynamic analysis of jointed rotor. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228(4), 646–663 (2013)

    Article  Google Scholar 

  6. Li, Y., Luo, Z., Liu, J., Ma, H., Yang, D.: Dynamic modeling and stability analysis of a rotor-bearing system with bolted-disk joint. Mech. Syst. Signal Process. 158, 107778 (2021)

    Article  Google Scholar 

  7. Luo, Z., Li, Y., Li, L., Liu, Z.: Nonlinear dynamic properties of the rotor-bearing system involving bolted disk-disk joint. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2141154096 (2020)

  8. Ma, H., Li, H., Zhao, X., Niu, H., Wen, B.: Effects of eccentric phase difference between two discs on oil-film instability in a rotor–bearing system. Mech. Syst. Signal Process. 41(1–2), 526–545 (2013)

    Article  Google Scholar 

  9. Haslam, A.H., Schwingshackl, C.W., Rix, A.I.J.: A parametric study of an unbalanced Jeffcott rotor supported by a rolling-element bearing. Nonlinear Dyn. (2020)

  10. Chen, G.: Study on nonlinear dynamic response of an unbalanced rotor supported on ball bearing. J. Vib. Acoust. 131(6), 1980–1998 (2009)

    Article  Google Scholar 

  11. Kim, Y.B., Noah, S.T.: Bifurcation analysis for a modified Jeffcott rotor with bearing clearances. Nonlinear Dynam. 1(3), 221–241 (1990)

    Article  Google Scholar 

  12. Villa, C., Sinou, J.J., Thouverez, F.: Stability and vibration analysis of a complex flexible rotor bearing system. Commun. Nonlinear Sci. 13(4), 804–821 (2008)

    Article  Google Scholar 

  13. Torsvik, J., Pedersen, E.: On the modeling of rotors with rolling element bearings using bond graphs. J. Sound Vib. 473, 115205 (2020)

    Article  Google Scholar 

  14. Gupta, T.C.: Parametric studies on dynamic stiffness of ball bearings supporting a flexible rotor. J. Vib. Control 25(15), 2175–2188 (2019)

    Article  MathSciNet  Google Scholar 

  15. Chen, W., Jin, M., Huang, J., Chen, Y., Song, H.: A method to distinguish harmonic frequencies and remove the harmonic effect in operational modal analysis of rotating structures. Mech. Syst. Signal Process. 161, 107928 (2021)

    Article  Google Scholar 

  16. Chen, Y., Escalera Mendoza, A.S., Griffith, D.T.: Experimental and numerical study of high-order complex curvature mode shape and mode coupling on a three-bladed wind turbine assembly. Mech. Syst. Signal Process. 160, 107873 (2021)

    Article  Google Scholar 

  17. Chen, G., Qu, M.: Modeling and analysis of fit clearance between rolling bearing outer ring and housing. J. Sound Vib. 438, 419–440 (2019)

    Article  Google Scholar 

  18. Pierart, F.G., Santos, I.F.: Lateral vibration control of a flexible overcritical rotor via an active gas bearing-theoretical and experimental comparisons. J. Sound Vib. 383, 20–34 (2016)

    Article  Google Scholar 

  19. Chen, G.: Vibration modelling and verifications for whole aero-engine. J. Sound Vib. 349, 163–176 (2015)

    Article  Google Scholar 

  20. Mevel, B., Guyader, J.L.: Experiments on routes to chaos in ball bearings. J. Sound Vib. 318(3), 549–564 (2008)

    Article  MATH  Google Scholar 

  21. Cui, L., Zheng, J.: Nonlinear vibration and stability analysis of a flexible rotor supported on angular contact ball bearings. J. Vib. Control 20(12), 1767–1782 (2013)

    Article  MATH  Google Scholar 

  22. Zeng, M., Tan, B., Ding, F., Zhang, B., Zhou, H., Chen, Y.: An experimental investigation of resonance sources and vibration transmission for a pure electric bus. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 234(4), 950–962 (2020)

    Article  Google Scholar 

  23. Hu, L., Liu, Y., Teng, W., Zhou, C.: Nonlinear coupled dynamics of a rod fastening rotor under rub-impact and initial permanent deflection. Energies 9(11), 883 (2016)

    Article  Google Scholar 

  24. Hu, L., Liu, Y., Zhao, L., Zhou, C.: Nonlinear dynamic response of a rub-impact rod fastening rotor considering nonlinear contact characteristic. Arch. Appl. Mech. 86(11), 1869–1886 (2016)

    Article  Google Scholar 

  25. Hei, D., Lu, Y., Zhang, Y., Lu, Z., Gupta, P., Müller, N.: Nonlinear dynamic behaviors of a rod fastening rotor supported by fixed–tilting pad journal bearings. Chaos Solitons Fract. 69, 129–150 (2014)

    Article  Google Scholar 

  26. Hei, D., Lu, Y., Zhang, Y., Liu, F., Zhou, C., Müller, N.: Nonlinear dynamic behaviors of rod fastening rotor-hydrodynamic journal bearing system. Arch. Appl. Mech. 85(7), 855–875 (2015)

    Article  MATH  Google Scholar 

  27. Wang, L., Wang, A., Jin, M., Huang, Q., Yin, Y.: Nonlinear effects of induced unbalance in the rod fastening rotor-bearing system considering nonlinear contact. Arch. Appl. Mech. 90(5), 917–943 (2020)

    Article  Google Scholar 

  28. Liu, Y., Liu, H., Yi, J., Jing, M.: Investigation on the stability and bifurcation of a rod-fastening rotor bearing system. J. Vib. Control 21(14), 2866–2880 (2013)

    Article  Google Scholar 

  29. Qin, Z.Y., Han, Q.K., Chu, F.L.: Bolt loosening at rotating joint interface and its influence on rotor dynamics. Eng. Fail. Anal. 59, 456–466 (2016)

    Article  Google Scholar 

  30. Sun, W., Li, T., Yang, D., Sun, Q., Huo, J.: Dynamic investigation of aeroengine high pressure rotor system considering assembly characteristics of bolted joints. Eng. Fail. Anal. 112, 104510 (2020)

    Article  Google Scholar 

  31. Yang, Y., Ouyang, H., Wu, X., Jin, Y., Yang, Y., Cao, D.: Bending-torsional coupled vibration of a rotor-bearing-system due to blade-casing rub in presence of non-uniform initial gap. Mech. Mach. Theory 140, 170–193 (2019)

    Article  Google Scholar 

  32. Varney, P., Green, I.: Rotordynamic analysis using the Complex Transfer Matrix: An application to elastomer supports using the viscoelastic correspondence principle. J. Sound Vib. 333(23), 6258–6272 (2014)

    Article  Google Scholar 

  33. Tatar, A., Schwingshackl, C.W., Friswell, M.I.: Dynamic behaviour of three-dimensional planetary geared rotor systems. Mech. Mach. Theory 134, 39–56 (2019)

    Article  Google Scholar 

  34. Chen, Y., Joffre, D., Avitabile, P.: Underwater dynamic response at limited points expanded to full-field strain response. J. Vib. Acoust. 140(5), 51016 (2018)

    Article  Google Scholar 

  35. Cui, X., He, Z., Huang, B., Chen, Y., Du, Z., Qi, W.: Study on the effects of wheel-rail friction self-excited vibration and feedback vibration of corrugated irregularity on rail corrugation. Wear, 203854 (2021)

  36. Tan, B., Chen, Y., Liao, Q., Zhang, B., Zhang, N., Xie, Q.: A condensed dynamic model of a heavy-duty truck for optimization of the powertrain mounting system considering the chassis frame flexibility. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 234(10–11), 2602–2617 (2020)

    Article  Google Scholar 

  37. Ma, H., Li, H., Niu, H., Song, R., Wen, B.: Numerical and experimental analysis of the first-and second-mode instability in a rotor-bearing system. Arch. Appl. Mech. 84(4), 519–541 (2014)

    Article  MATH  Google Scholar 

  38. Tai, X., Ma, H., Liu, F., Liu, Y., Wen, B.: Stability and steady-state response analysis of a single rub-impact rotor system. Arch. Appl. Mech. 85(1), 133–148 (2015)

    Article  Google Scholar 

  39. Chen Y., Zhang B., Zhang N., Zheng M.: A condensation method for the dynamic analysis of vertical vehicle–track interaction considering vehicle flexibility. J. Vib. Acoust. 137(4) (2015)

  40. She, H., Li, C., Tang, Q., Wen, B.: The investigation of the coupled vibration in a flexible-disk blades system considering the influence of shaft bending vibration. Mech. Syst. Signal Process. 111, 545–569 (2018)

    Article  Google Scholar 

  41. Fei, Z., Tong, S., Wei, C.: Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method. J. Zhejiang Univ. -Sci. A (Appl. Phys. Eng.) 14(4), 268–280 (2013)

  42. Briend, Y., Dakel, M., Chatelet, E., Andrianoely, M., Dufour, R., Baudin, S.: Effect of multi-frequency parametric excitations on the dynamics of on-board rotor-bearing systems. Mech. Mach. Theory 145, 103660 (2020)

    Article  Google Scholar 

  43. Han, Q., Chu, F.: Parametric instability of flexible rotor-bearing system under time-periodic base angular motions. Appl. Math. Model. 39(15), 4511–4522 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hu, L., Liu, Y., Zhao, L., Zhou, C.: Nonlinear dynamic behaviors of circumferential rod fastening rotor under unbalanced pre-tightening force. Arch. Appl. Mech. 86(9), 1621–1631 (2016)

    Article  Google Scholar 

  45. Zhou, Y., Luo, Z., Bian, Z., Wang, F.: Nonlinear vibration characteristics of the rotor bearing system with bolted flange joints. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 233(4), 910–930 (2019)

    Google Scholar 

  46. Qin, Z.Y., Han, Q.K., Chu, F.L.: Analytical model of bolted disk- drum joints and its application to dynamic analysis of jointed rotor. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228(4), 646–663 (2014)

    Article  Google Scholar 

  47. Maraini, D., Nataraj, C.: Nonlinear analysis of a rotor-bearing system using describing functions. J. Sound Vib. 420, 227–241 (2018)

    Article  Google Scholar 

  48. Li, Y., Luo, Z., He, F., Zhu, Y., Ge, X.: Modeling of rotating machinery: a novel frequency sweep system identification approach. J. Sound Vib. 494, 115882 (2021)

    Article  Google Scholar 

  49. Li, Y., Luo, Z., Shi, B., He, F.: NARX model-based dynamic parametrical model identification of the rotor system with bolted joint. Arch. Appl. Mech. (2021)

  50. Li, C., She, H., Tang, Q., Wen, B.: The effect of blade vibration on the nonlinear characteristics of rotor-bearing system supported by nonlinear suspension. Nonlinear Dyn. 89(2), 987–1010 (2017)

    Article  Google Scholar 

  51. Brake, M.R.W.: The Mechanics of Jointed Structures. Springer, Berlin (2018)

    Book  Google Scholar 

  52. Beaudoin, M., Behdinan, K.: Analytical lump model for the nonlinear dynamic response of bolted flanges in aero-engine casings. Mech. Syst. Signal Process. 115, 14–28 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant No. 11872148, U1908217); the Fundamental Research Funds for the Central Universities of China (Grant No. N2003012, N2003013, N170308028, N180703018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Luo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, including specific financial interests and relationships relevant to the subject of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$ {\mathbf{A}}_{{\mathbf{0}}} = \left[ {\begin{array}{*{20}c} {\cos \theta_{Z2} } & {\sin \theta_{Z2} } & 0 \\ { - \sin \theta_{Z2} } & {\cos \theta_{Z2} } & 0 \\ 1 & 0 & 0 \\ \end{array} } \right] $$
(A.1)
$$ {\mathbf{A}}_{1} = \left[ {\begin{array}{*{20}c} {1} & {0} & {0} \\ {0} & {\cos \theta_{X1} } & {\sin \theta_{X1} } \\ {0} & { - \sin \theta_{X1} } & {\cos \theta_{X1} } \\ \end{array} } \right] $$
(A.2)
$$ {\mathbf{A}}_{2} = \left[ {\begin{array}{*{20}c} {\cos \theta_{Y} } & 0 & { - \sin \theta_{Y} } \\ 0 & 1 & 0 \\ {\sin \theta_{Y} } & 0 & {\cos \theta_{Y} } \\ \end{array} } \right] $$
(A.3)

Appendix B

$$ {\mathbf{M}}_{{\text{d}}} = \left[ {\begin{array}{*{20}c} {m_{3} } & 0 & 0 & 0 \\ 0 & {m_{3} } & 0 & 0 \\ 0 & 0 & {J_{{{\text{d}}3}} } & 0 \\ 0 & 0 & 0 & {J_{{{\text{d}}3}} } \\ \end{array} } \right] $$
(B.1)
$$ {\mathbf{G}}_{{\text{d}}} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & { - J_{{{\text{p}}3}} } \\ 0 & 0 & {J_{{{\text{p}}3}} } & 0 \\ \end{array} } \right] $$
(B.2)
$$ {\mathbf{Q}}_{{\text{d}}}^{{\text{u}}} = m_{3} \omega^{2} \left\{ {\begin{array}{*{20}c} {e_{1} {\text{cos}}\left( {\omega t + \varphi_{1} } \right)} \\ {e_{1} {\text{sin}}\left( {\omega t + \varphi_{1} } \right)} \\ 0 \\ 0 \\ \end{array} } \right\} $$
(B.3)
$$ {\mathbf{Q}}_{{\text{d}}}^{{\text{g}}} = m_{3} g\left\{ {\begin{array}{*{20}c} 0 \\ { - 1} \\ 0 \\ 0 \\ \end{array} } \right\} $$
(B.4)

Appendix C

$$ {\mathbf{M}}_{{\text{J}}} { = }\left[ {\begin{array}{*{20}c} {m_{4} } & {} & {} & {} & {} & {} & {} & {} \\ 0 & {m_{4} } & {} & {} & {} & {} & {} & {} \\ 0 & 0 & {J_{{{\text{d}}4}} } & {} & {} & {{\text{sym}}} & {} & {} \\ 0 & 0 & 0 & {J_{{{\text{d}}4}} } & {} & {} & {} & {} \\ 0 & 0 & 0 & 0 & {m_{5} } & {} & {} & {} \\ 0 & 0 & 0 & 0 & 0 & {m_{5} } & {} & {} \\ 0 & 0 & 0 & 0 & 0 & 0 & {J_{{{\text{d}}5}} } & {} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & {J_{{{\text{d}}5}} } \\ \end{array} } \right] $$
(C.1)
$$ {\mathbf{G}}_{{\text{J}}} { = }\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & { - J_{{{\text{p}}4}} } & 0 & 0 & 0 & 0 \\ 0 & 0 & {J_{{{\text{p}}4}} } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & { - J_{{{\text{p}}5}} } \\ 0 & 0 & 0 & 0 & 0 & 0 & {J_{{{\text{p}}5}} } & 0 \\ \end{array} } \right] $$
(C.2)
$$ {\mathbf{K}}_{{\text{J}}} = \left[ {\begin{array}{*{20}c} {k_{{\text{s}}} } & 0 & 0 & {k_{1} } & { - k_{{\text{s}}} } & 0 & 0 & {k_{2} } \\ 0 & {k_{{\text{s}}} } & { - k_{1} } & 0 & 0 & { - k_{{\text{s}}} } & { - k_{2} } & 0 \\ 0 & { - k_{1} } & {k_{\theta } } & 0 & 0 & {k_{2} } & {k_{\theta } - k_{\theta }^{{\prime }} } & 0 \\ {k_{1} } & 0 & 0 & {k_{\theta } } & { - k_{2} } & 0 & 0 & {k_{\theta } - k_{\theta }^{\prime } } \\ { - k_{{\text{s}}} } & 0 & 0 & { - k_{2} } & {k_{{\text{s}}} } & 0 & 0 & { - k_{1} } \\ 0 & { - k_{{\text{s}}} } & {k_{2} } & 0 & 0 & {k_{{\text{s}}} } & {k_{1} } & 0 \\ 0 & { - k_{2} } & {k_{\theta } - k_{\theta }^{\prime } } & 0 & 0 & {k_{1} } & {k_{\theta } } & 0 \\ {k_{2} } & 0 & 0 & {k_{\theta } - k_{\theta }^{\prime } } & { - k_{1} } & 0 & 0 & {k_{\theta } } \\ \end{array} } \right] $$
(C.3)
$$ {\mathbf{Q}}_{{\text{J}}}^{{\text{u}}} = \left[ {m_{4} \omega^{2} e_{2} {\text{cos}}\left( {\omega t + \varphi_{2} } \right),m_{4} \omega^{2} e_{2} {\text{sin}}\left( {\omega t + \varphi_{2} } \right),0,0,m_{5} \omega^{2} e_{3} {\text{cos}}\left( {\omega t + \varphi_{3} } \right),m_{5} \omega^{2} e_{3} {\text{sin}}\left( {\omega t + \varphi_{3} } \right),0,0} \right]^{{\text{T}}} $$
(C.4)
$$ {\mathbf{Q}}_{{\text{J}}}^{{\text{g}}} = \left[ {0, - m_{4} g,0,0,0, - m_{5} g,0,0} \right]^{{\text{T}}} $$
(C.5)

Appendix D

$$ {\tilde{\mathbf{q}}} = \left[ {x_{1} ,\theta_{y1} ,x_{2} ,\theta_{y2} ,x_{3} ,\theta_{y3} ,x_{4} ,\theta_{y4} ,y_{1} ,\theta_{x1} ,y_{2} ,\theta_{x2} ,y_{3} ,\theta_{x3} ,y_{4} ,\theta_{x4} } \right]^{{\text{T}}} $$
(D.1)
$$ {\tilde{\mathbf{M}}} = \left[ {\begin{array}{*{20}c} {{\tilde{\mathbf{M}}}_{x} } & 0 \\ 0 & {{\tilde{\mathbf{M}}}_{y} } \\ \end{array} } \right],\;\;\;{\kern 1pt} {\tilde{\mathbf{M}}}_{x} = {\tilde{\mathbf{M}}}_{y} = {\text{diag}} \left[ {m_{1} ,J_{{{\text{d}}1}} ,m_{2} ,J_{{{\text{d}}2}} ,m_{3} ,J_{{{\text{d}}3}} ,m_{4} ,J_{{{\text{d}}4}} } \right] $$
(D.2)
$$ {\tilde{\mathbf{G}}} = \omega {\tilde{\mathbf{J}}} = \omega \left[ {\begin{array}{*{20}c} 0 & {{\tilde{\mathbf{J}}}_{1} } \\ { - {\tilde{\mathbf{J}}}_{1}^{{\text{T}}} } & 0 \\ \end{array} } \right],\;\;\;{\kern 1pt} {\mathbf{J}}_{1} = {\text{diag}} \left[ {0,J_{{{\text{p}}1}} ,0,J_{{{\text{p}}2}} ,0,J_{{{\text{p}}3}} ,0,J_{{{\text{p}}4}} } \right] $$
(D.3)
$$ {\tilde{\mathbf{K}}} = \left[ {\begin{array}{*{20}c} {{\tilde{\mathbf{K}}}_{x} } & 0 \\ 0 & {{\tilde{\mathbf{K}}}_{y} } \\ \end{array} } \right] $$
(D.4)
$$ {\tilde{\mathbf{K}}}_{x} = \left[ {\begin{array}{*{20}l} {k_{11} } \hfill & {k_{12} } \hfill & {k_{13} } \hfill & {k_{14} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {k_{12} } \hfill & {k_{22} } \hfill & {k_{23} } \hfill & {k_{24} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {k_{13} } \hfill & {k_{23} } \hfill & {k_{33} + k_{{\text{s}}} } \hfill & {k_{34} + k_{1} {\kern 1pt} } \hfill & { - k_{{\text{s}}} } \hfill & {k_{2} } \hfill & 0 \hfill & 0 \hfill \\ {k_{14} } \hfill & {k_{24} } \hfill & {k_{34} + k_{1} {\kern 1pt} } \hfill & {k_{44} { + }k_{\theta } } \hfill & { - k_{2} } \hfill & {k_{\theta } - k_{\theta }^{\prime } } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & { - k_{{\text{s}}} } \hfill & { - k_{2} } \hfill & {k_{55} { + }k_{{\text{s}}} } \hfill & {k_{56} - k_{1} } \hfill & {k_{57} } \hfill & {k_{58} } \hfill \\ 0 \hfill & 0 \hfill & {k_{2} } \hfill & {k_{\theta } - k_{\theta }^{\prime } } \hfill & {k_{56} - k_{1} } \hfill & {k_{66} { + }k_{\theta } } \hfill & {k_{67} } \hfill & {k_{68} } \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {k_{57} } \hfill & {k_{67} } \hfill & {k_{77} } \hfill & {k_{78} } \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {k_{58} } \hfill & {k_{68} } \hfill & {k_{78} } \hfill & {k_{88} } \hfill \\ \end{array} } \right] $$
(D.5)
$$ {\tilde{\mathbf{K}}}_{y} = \left[ {\begin{array}{*{20}l} {k_{11} } \hfill & { - k_{12} } \hfill & {k_{13} } \hfill & { - k_{14} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ { - k_{12} } \hfill & {k_{22} } \hfill & { - k_{23} } \hfill & {k_{24} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {k_{13} } \hfill & { - k_{23} } \hfill & {k_{33} + k_{s} } \hfill & {k_{34} + k_{1} } \hfill & { - k_{s} } \hfill & { - k_{2} } \hfill & 0 \hfill & 0 \hfill \\ { - k_{14} } \hfill & {k_{24} } \hfill & {k_{34} - k_{1} {\kern 1pt} } \hfill & {k_{44} + k_{\theta } } \hfill & {k_{2} } \hfill & {k_{\theta } - k_{\theta }^{\prime } } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & { - k_{s} } \hfill & {k_{2} } \hfill & {k_{55} { + }k_{s} } \hfill & { - k_{56} + k_{1} } \hfill & {k_{57} } \hfill & { - k_{58} } \hfill \\ 0 \hfill & 0 \hfill & { - k_{2} } \hfill & {k_{\theta } - k_{\theta }^{\prime } } \hfill & { - k_{56} + k_{1} } \hfill & {k_{66} { + }k_{\theta } } \hfill & { - k_{67} } \hfill & {k_{68} } \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {k_{57} } \hfill & { - k_{67} } \hfill & {k_{77} } \hfill & { - k_{78} } \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & { - k_{58} } \hfill & {k_{68} } \hfill & { - k_{78} } \hfill & {k_{88} } \hfill \\ \end{array} } \right] $$
(D.6)

The elements of the matrix \({\tilde{\mathbf{K}}}_{x}\) and \({\tilde{\mathbf{K}}}_{y}\) are given as follows:

$$ \left\{ {\begin{array}{*{20}l} {k_{11} = a_{11} } \hfill \\ {k_{12} = a_{21} } \hfill \\ {k_{13} = - a_{11} } \hfill \\ {k_{14} = a_{21} } \hfill \\ \end{array} ,\left\{ {\begin{array}{*{20}l} {k_{33} = a_{12} } \hfill \\ {k_{34} = - a_{21} } \hfill \\ {k_{77} = a_{13} } \hfill \\ {k_{78} = - a_{23} } \hfill \\ \end{array} ,} \right.{\kern 1pt} } \right.{\kern 1pt} \left\{ {\begin{array}{*{20}l} {k_{22} = l_{1} a_{21} - a_{31} } \hfill \\ {k_{23} = - a_{21} } \hfill \\ {k_{24} = a_{31} } \hfill \\ {k_{44} = l_{1} a_{21} - a_{31} } \hfill \\ \end{array} } \right.,\left\{ {\begin{array}{*{20}l} {k_{55} = a_{12} } \hfill \\ {k_{56} = a_{22} } \hfill \\ {k_{66} = l_{2} a_{22} - a_{32} } \hfill \\ {k_{88} = l_{2} a_{22} - a_{32} } \hfill \\ \end{array} } \right. $$
(D.7)

where

$$ \left\{ {\begin{array}{*{20}l} {a_{1i} = \frac{{12{\text{EI}}}}{{l_{i}^{3} }}} \hfill \\ {a_{2i} = \frac{1}{2}l_{i} a_{1i} } \hfill \\ {a_{3i} = \frac{1}{6}l_{i}^{2} a_{1i} } \hfill \\ \end{array} ,\quad i = 1,2} \right. $$
(D.8)

The damping matrix \({\tilde{\mathbf{C}}}\) of the rotor system can be calculated by the following:

$$ {\tilde{\mathbf{C}}} = \alpha {\tilde{\mathbf{M}}} + \beta {\tilde{\mathbf{K}}} $$
(D.9)

And the external force vector can be calculated by:

$$ {\tilde{\mathbf{Q}}}_{u} = \left[ {0,0,m_{2} \tilde{e}_{1} \omega^{2} \cos \left( {\omega t} \right),0,m_{3} \tilde{e}_{2} \omega^{2} \cos \left( {\omega t} \right),0,0,0,} \right.\left. {0,0,m_{2} \tilde{e}_{1} \omega^{2} \sin \left( {\omega t} \right),0,m_{3} \tilde{e}_{2} \omega^{2} \sin \left( {\omega t} \right),0,0,0} \right]^{{\text{T}}} $$
(D.10)
$$ {\tilde{\mathbf{Q}}}_{{\text{b}}} = \left[ {f_{x1}^{{\text{b}}} ,0,0,0,0,0,f_{x4}^{{\text{b}}} ,0,f_{y1}^{{\text{b}}} ,0,0,0,0,0,_{y4}^{{\text{b}}} ,0} \right]^{{\text{T}}} $$
(D.11)
$$ {\tilde{\mathbf{Q}}}_{{\text{g}}} = \left[ {0,0,0,0,0,0,0,0,m_{1} g,0,m_{2} g,0,m_{3} g,0,m_{4} g,0} \right]^{{\text{T}}} $$
(D.12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Luo, Z., Wang, J. et al. Numerical and experimental analysis of the effect of eccentric phase difference in a rotor-bearing system with bolted-disk joint. Nonlinear Dyn 105, 2105–2132 (2021). https://doi.org/10.1007/s11071-021-06698-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06698-4

Keywords

Navigation