Skip to main content
Log in

Exact and numerical solutions of two-dimensional time-fractional diffusion–reaction equations through the Lie symmetries

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a two-dimensional time-fractional diffusion-reaction equation involving the Riemann–Liouville derivative is considered. Exact and numerical solutions are obtained by applying a procedure that combines the Lie symmetry analysis with the numerical methods. Lie symmetries are determined; then through the Lie transformations, the target equation is reduced into a new one-dimensional time-fractional differential equation. By solving the reduced fractional partial differential equation, exact and numerical solutions are found. The numerical solutions are determined by introducing the Caputo definition fractional derivative and by using an implicit classical numerical method. Comparisons between the numerical and exact solutions are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, North-Holland mathematics studies (2006)

    MATH  Google Scholar 

  2. Samko, S., Kilbas, A.A., Marichev, O.: Fractional Integrals and Derivatives. Taylor and Francis, Milton Park (1993)

    MATH  Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  4. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New Jersey (1993)

    MATH  Google Scholar 

  5. Daftardar-Geji, V., Jafari, H.: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301, 508–518 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, J.F., Chu, Y.M.: Solution to the linear fractional differential equation using Adomian decomposition method. Math. Prob. Eng. (2011). https://doi.org/10.1155/2011/587068

    Article  MathSciNet  MATH  Google Scholar 

  7. Garra, R., Polito, F.: Analytic solutions of fractional differential equations by operational methods. Appl. Math. Comput. 218, 10642–10646 (2012). https://doi.org/10.1016/j.amc.2012.04.028

    Article  MathSciNet  MATH  Google Scholar 

  8. Garra, R.: Analytic solution of a class of fractional differential equations with variable coefficients by operatorial methods. Commun. Nonlinear Sci. Numer. Simulat. 17, 1549–1554 (2012). https://doi.org/10.1016/j.cnsns.2011.08.041

    Article  MathSciNet  MATH  Google Scholar 

  9. Hilfer, R., Luchko, Y., Tomovski, Z.: Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Cal. Appl. Anal. 12(3), 299–318 (2009)

    MathSciNet  MATH  Google Scholar 

  10. He, J.H.: A coupling method of a homotopy technique and a perturbation technique for nonlinear problems. Int. J. NonLinear Mech. 35, 37–43 (2000)

    Article  MATH  Google Scholar 

  11. He, J.H.: New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B 20, 2561–2668 (2006)

    Article  Google Scholar 

  12. Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345–350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fazio, R., Jannelli, A., Agreste, S.: A finite difference method on non-uniform meshes for time-fractional advection-diffusion equations with a source term. Appl. Sci. 8, 960 (2018)

    Article  Google Scholar 

  14. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  15. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  16. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer-Verlag Inc., New York (1989)

    Book  MATH  Google Scholar 

  17. Ibragimov, N.H.: CRC Handbook of Lie Group Analysis of Differential Equations. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  18. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Continuous transformation groups of fractional dfferential equations. Vestn. USATU 9, 125–35 (2007)

    Google Scholar 

  19. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Symmetry properties of fractional diffusion equations. Phys. Scr. T136, 014016 (2009)

    Article  Google Scholar 

  20. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Group-invariant solutions of fractional differential equations. Nonlinear Sci. Complex. 51–59,(2011)

  21. Leo, R.A., Sicuro, G., Tempesta, P.: A theorem on the existence of symmetries of fractional PDEs. C.R. Math. 352(3), 219–222 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the lie group of scaling transformations. J. Math. Anal. Appl. 227(1), 81–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bakkyaraj, T., Sahadevan, R.: Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative. Nonlinear Dyn. 80(1), 447–455 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sahadevan, R., Prakash, P.: Exact solution of certain time fractional nonlinear partial differential equations. Nonlinear Dyn. 85(1), 659–673 (2016). https://doi.org/10.1007/s11071-016-2714-4

    Article  MathSciNet  MATH  Google Scholar 

  25. Prakash, P., Sahadevan, R.: Lie symmetry analysis and exact solution of certain fractional ordinary differential equations. Nonlinear Dyn. 89(1), 305–319 (2017). https://doi.org/10.1007/s11071-017-3455-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Sahadevan, R., Prakash, P.: Lie symmetry analysis and conservation laws of certain time fractional partial differential equations. Int. J. Dyn. Syst. Differ. Equ. 9(1), 44–64 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  28. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  29. Jannelli, A., Ruggieri, M., Speciale, M.P.: Analytical and numerical solutions of fractional type advection-diffusion equation. AIP Conf. Proc. 1863(1), 530005 (2017)

    Article  Google Scholar 

  30. Jannelli, A., Ruggieri, M., Speciale, M.P.: Exact and numerical solutions of time-fractional advection-diffusion equation with a nonlinear source term by means of the lie symmetries. Nonlinear Dyn. 92, 543–555 (2018)

    Article  MATH  Google Scholar 

  31. Jannelli, A., Ruggieri, M., Speciale, M.P.: Analytical and numerical solutions of time and space fractional advection-diffusion-reaction equation. Commun. Nonlinear Sci. Numer. Simul. 70, 89–101 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jannelli, A., Ruggieri, M., Speciale, M.P.: Numerical solutions of space fractional advection-diffusion equation with source term. AIP Conf. Proc. 2116, 280007 (2019)

    Article  MATH  Google Scholar 

  33. Jannelli, A., Ruggieri, M., Speciale, M.P.: Numerical solutions of space fractional advection-diffusion equation, with nonlinear source term. Appl. Num. Math. 155, 93–102 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jannelli, A.: Numerical solutions of fractional differential equations arising in engineering sciences. Mathematics 8, 215 (2020)

    Article  Google Scholar 

  35. Vu, K.T., Jefferson, G.F., Carminati, J.: Finding generalized symmetries of differential equations using the MAPLE package DESOLVII. Comput. Phys. Commun. 183, 1044–1054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jefferson, G.F., Carminati, J.: ASP: automated symbolic computation of approximate symmetries of differential equations. Comput. Phys. Comm. 184, 1045–1063 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin (2004)

    Google Scholar 

  38. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, Cambridge (1974)

  39. Garrappa, R.: Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53(3), 1350–1369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A. Jannelli is member of the GNCS-INdAM research group. M. Speciale is member of the GNFM-INdAM research group

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Paola Speciale.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jannelli, A., Speciale, M.P. Exact and numerical solutions of two-dimensional time-fractional diffusion–reaction equations through the Lie symmetries. Nonlinear Dyn 105, 2375–2385 (2021). https://doi.org/10.1007/s11071-021-06697-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06697-5

Keywords

Navigation