Skip to main content
Log in

Rogue and semi-rogue waves defined by volume

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We define a quantized nonlinear pulse ‘volume’. This then allows us to determine the characteristic of a possible rogue wave by looking at its volume, found from a surface integral. Where higher powers are needed in the integrand, due to slow decay of a pulse, we describe the excitation as a ‘semi-rogue’ wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  Google Scholar 

  2. Ankiewicz, A., Akhmediev, N.: Multi-rogue waves and triangular numbers. Rom. Rep. Phys. 69, 104 (2017)

    Google Scholar 

  3. Ankiewicz, A., Bokaeeyan, M.: Integral relations for rogue wave formations of Gardner equation. Nonlinear Dyn. 99, 2939–2944 (2020)

    Article  Google Scholar 

  4. Ankiewicz, A., Kedziora, D.J., Akhmediev, N.: Rogue wave triplets. Phys. Lett. A 375(28–29), 2782–2785 (2011)

    Article  Google Scholar 

  5. Ankiewicz, A., Bassom, A.P., Clarkson, P.A., Dowie, E.: Conservation laws and integral relations for the Boussinesq equation. Stud. Appl. Math. 139, 104–128 (2017)

    Article  MathSciNet  Google Scholar 

  6. Xu, S.-w, He, J.-s, Wang, L.-h: Two kinds of rogue waves of the general nonlinear Schrödinger equation with derivative. EPL 97, 30007 (2012). https://doi.org/10.1209/0295-5075/97/30007

  7. Zhang, Y., Guo, L.-j, Xu, S.-w, Wu, Z.-w, He, J.-s: The hierarchy of higher order solutions of the derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 19, 1706–1722 (2014)

  8. Guo, B.-l, Ling, L.-m, Liu, Q.-P.: High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations. Stud. Appl. Math. 130, 317–344 (2012). https://doi.org/10.1111/j.1467-9590.2012.00568.x317

  9. He, J-s., Xu, S-w., Cheng, Y.: The rational solutions of the mixed nonlinear Schrödinger equation, AIP Advances v.5, 017105 (2015) . Eq.51

  10. Lenells, J.: Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud. Appl. Math. 123, 215–232 (2009)

    Article  MathSciNet  Google Scholar 

  11. Lenells, J., Fokas, A.S.: Nonlinearity 22, 11–27 (2009)

    Article  MathSciNet  Google Scholar 

  12. He, J.-s, Xu, S., Porsezian, K.: Rogue waves of the Fokas–Lenells Equation. J. Phys. Soc. Jpn. 8, 124007 (2012)

  13. Tang, Y.-n, He, C.-h, Zhou, M.-L.: Darboux transformation of a new generalized nonlinear Schrödinger equation: soliton solutions, breather solutions, and rogue wave solutions. Nonlinear Dyn. 92, 2023–2036 (2018). https://doi.org/10.1007/s11071-018-4178-1

  14. Wang, Z.-h, He, L.-y, Qin, Z.-y, Grimshaw, R., Mu, G.: High-order rogue waves and their dynamics of the Fokas–Lenells equation revisited: a variable separation technique. Nonlinear Dyn. 98, 2067–2077 (2019). https://doi.org/10.1007/s11071-019-05308-8

  15. Kundu, A.: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433 (1984). https://doi.org/10.1063/1.526113

    Article  MathSciNet  Google Scholar 

  16. Kundu, A.: Integrable hierarchy of higher nonlinear Schrödinger type equations. Symm. Integr. Geom. Methods Appl. 2, 78 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Zhao, L.-C., Liu, C., Yang, Z.Y.: Commun. Nonlinear Sci. Numer. Simul. 20, 9–13 (2015)

    Article  Google Scholar 

  18. On rogue wave in the Kundu-DNLS equation: Shan, S.-b, Li, C.-z, He, J.-S. Open J. Appl. Sci. 3, 99–101 (2013)

    Article  Google Scholar 

  19. Qiu, D., He, J., Zhang Y., Porsezian, K.: Proc. R. Soc., A, 471, 20150236, (2015). See Eq. 4.5

  20. Mu, G., Qin, Z.: Rogue waves for the coupled Schrödinger-Boussinesq equation and the coupled Higgs equation. J. Phys. Soc. Jpn. 81, 084001 (2012)

    Article  Google Scholar 

  21. Zhaqilao,: Dynamics of localized wave solutions for the coupled Higgs field equation, Nonlinear Dyn., (2019) 98:2067–2077. See eqn.29

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sole author paper.

Corresponding author

Correspondence to A. Ankiewicz.

Ethics declarations

Conflict of interest

The author declares that he has no conflict.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankiewicz, A. Rogue and semi-rogue waves defined by volume. Nonlinear Dyn 104, 4241–4252 (2021). https://doi.org/10.1007/s11071-021-06449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06449-5

Keywords

Navigation