Skip to main content
Log in

A multilayer neural dynamic controller design method of quadrotor UAV for completing time-varying tasks

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In order to track the time-varying trajectory efficiently and accurately, a multilayer neural dynamic controller is proposed and exploited for quadrotor unmanned aerial vehicles (UAVs). Previous UAV controllers based on neural dynamic methods used forces and torques as control variables. However, in fact, the real control variables of a UAV are the PWM waves for controlling motors. What is more, the motors are always modeled as one-order systems since the existence of inertia and friction, which means that using forces and torques as control variables is not proper and may lead to low precision and inefficient tracking for UAVs. To solve this problem, a new UAV controller which uses exactly what inputs to motors as control variables is designed, so that the designed controller is more practical for UAVs. In the design process, a multilayer neural dynamic controller is obtained by applying the neural dynamic method to position layer, velocity, torque layer and motor layer successively. Both theoretical analysis and computer simulation results verify the effectiveness, convergence, stability and accuracy of the proposed multilayer neural dynamic controller for tracking time-varying trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yao, P., Xie, Z., Ren, P.: Optimal UAV route planning for coverage search of stationary target in river. IEEE Trans. Control Syst. Technol. 2(7), 822–829 (2019)

    Article  Google Scholar 

  2. Shang, B., Liu, J., Zhang, Y., Wu, C., Chen, Y.: Fractional-order flight control of quadrotor UAS on vision-based precision hovering with larger sampling period. Nonlinear Dyn. 9(7), 1735–1746 (2019)

    Article  Google Scholar 

  3. Cristofalo, E., Montijano, E., Schwager, M.: Vision-based control for fast 3-D reconstruction with an aerial robot. IEEE Trans. Control Syst. Technol. 2(8), 1–14 (2019)

    Google Scholar 

  4. Sandino, J., Pegg, G., Gonzalez, F., Smith, G.: Aerial mapping of forests affected by pathogens using UAVs, hyperspectral sensors, and artificial intelligence. Sensors 18, 944 (2018)

    Article  Google Scholar 

  5. Rossi, G., Tanteri, L., Tofani, V., Vannocci, P., Moretti, S., Casagli, N.: Multitemporal UAV surveys for landslide mapping and characterization. Landslides 1(5), 1045–1052 (2018)

    Article  Google Scholar 

  6. Motlagh, N.H., Bagaa, M., Taleb, T.: UAV-based IOT platform: A crowd surveillance use case. IEEE Commun. Mag. 5(5), 128–134 (2017)

    Article  Google Scholar 

  7. Vanegas, F., Bratanov, D., Powell, K., Weiss, J., Gonzalez, F.: A novel methodology for improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data. Sensors 18, 260 (2018)

    Article  Google Scholar 

  8. Xu, Q., Wang, Z., Zhen, Z.: Adaptive neural network finite time control for quadrotor UAV with unknown input saturation. Nonlinear Dyn. 9(8), 1973–1998 (2019)

    Article  Google Scholar 

  9. Sanchez, A., Carrillo, L.R.G., Rondon, E., Lozano, R., Garcia, O.: Hovering flight improvement of a quad-rotor mini UAV using brushless DC motors. J. Intell. Robot. Syst. 6(1), 85–101 (2011)

    Article  Google Scholar 

  10. Mohamed, M.K., Lanzon, A.: Design and control of novel tri-rotor UAV. Proceedings of 2012 UKACC International Conference on Control, Cardiff, pp 304–309 (2012)

  11. Gao, F., Lin, Y., Shen, S.: Gradient-based online safe trajectory generation for quadrotor flight in complex environments. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, pp. 3681-3688 (2017)

  12. Nandakumar, G., Saphal, R., Joishy, A., Thondiyath, A.: Performance analysis of vertically offset overlapped propulsion system based quadrotor in an aerial mapping mission. Int. J. Micro Air Veh. 1, 370–385 (2018)

    Article  Google Scholar 

  13. Wang, H., Liu, Y.: A low-cost autonomous navigation system for a quadrotor in complex outdoor environments. Int. J. Adv. Rob. Syst. 1, 7 (2020). https://doi.org/10.1177/1729881420905150

    Article  Google Scholar 

  14. Nex, F., Remondino, F.: UAV for 3D mapping applications: a review. Appl. Geom. 6(1), 1–15 (2014)

    Article  Google Scholar 

  15. Dong, X., Yu, B., Shi, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2015)

    Article  Google Scholar 

  16. Ismail, Z.H., Sabri, A.Q.M.: PD control scheme with region formulation for slow time-varying tracking control of an unmanned aerial vehicle. 2014 International Conference on Information Science & Applications (ICISA), Seoul, (2014), pp 1–5, https://doi.org/10.1109/ICISA.2014.6847443.

  17. Gomez-Balderas, J., Flores, G., Garcia Carrillo, L.R., Lozano, R.: Tracking a ground moving target with a quadrotor using switching control. J. Intell. Robot. Syst. 7, 65–78 (2013)

    Article  Google Scholar 

  18. Esrafilian, O., Taghirad, H.D.: Autonomous flight and obstacle avoidance of a quadrotor by monocular SLAM. 2016 4th International Conference on Robotics and Mechatronics (ICROM), pp. 240-245 (2016)

  19. Koszewnik, A.: The parrot UAV controlled by PID controllers. Acta Mech. Autom. 8(2), 65–69 (2014)

    Google Scholar 

  20. Reyes-Valeria, E., Enriquez-Caldera, R., Camacho-Lara, S., Guichard, J.: LQR control for a quadrotor using unit quaternions: modeling and simulation. CONIELECOMP 2013, 23rd International Conference on Electronics, Communications and Computing, pp. 172–178 (2013)

  21. Herrera, M., Chamorro, W., Gmez, A., Camacho, O.: Sliding mode control: an approach to control a quadrotor. 2015 Asia-Pacific Conference on Computer Aided System Engineering, Quito, pp. 314–319 (2015)

  22. Runcharoon, K., Srichatrapimuk, V.: Sliding mode control of quadrotor. Taeece 552–557 (2013)

  23. Bouadi, H., Bouchoucha, M., Tadjine, M.: Sliding mode control based on backstepping approach for an UAV type-quadrotor. Int. J. Appl. Math. Comput. Sci. 4, 12–17 (2007)

    Google Scholar 

  24. Bouabdallah, S., Siegwart, R.: Backstepping and sliding mode techniques applied to an indoor micro quadrotor. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2247–2252 (2005). https://doi.org/10.1109/ROBOT.2005.1570447

  25. Madani, T., Benallegue, A.: Backstepping control for a quadrotor helicopter. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3255–3260 (2006). https://doi.org/10.1109/IROS.2006.282433.

  26. Mian, A., Daobo, W.: Modeling and backstepping-based nonlinear control strategy for a 6 DOF quadrotor helicopter. Chin. J. Aeronaut. 2(1), 261–268 (2008)

    Article  Google Scholar 

  27. Liu, C., Pan, J., Chang, Y.: PID and LQR trajectory tracking control for an unmanned quadrotor helicopter: experimental studies. 2016 35th Chinese Control Conference (CCC), pp. 10845–10850 (2016)

  28. KÖKSAL, N., Hao, A., Fidan, B.: Two-level nonlinear tracking control of a quadrotor unmanned aerial vehicle. IfAC Papersonline 49, 254–259 (2016)

  29. Li, C., Zhang, Y., Li, P.: Full control of a quadrotor using parameter-scheduled backstepping method: implementation and experimental tests. Nonlinear Dyn. 8(9), 1259–1278 (2017)

    Article  Google Scholar 

  30. Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    Article  MathSciNet  Google Scholar 

  31. Xia, Y.: A new neural network for solving linear and quadratic programming problems. IEEE Trans. Neural Netw. 7(6), 1544–8 (1996)

    Article  Google Scholar 

  32. Xia, Y., Wang, J.: A general methodology for designing globally convergent optimization neural networks. IEEE Trans. Neural Netw. 9(6), 1331–1343 (1998)

    Article  Google Scholar 

  33. Xia, Y., Wang, J.: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints. IEEE Trans. Circuits Syst. Part I Fund. Theory Appl. 51(7), 1385–1394 (2004)

    Article  MathSciNet  Google Scholar 

  34. Xia, Y., Feng, G., Kamel, M.: Development and analysis of a neural dynamical approach to nonlinear programming problems. IEEE Trans. Autom. Control 52(11), 2154–2159 (2007)

    Article  MathSciNet  Google Scholar 

  35. Liu, Q., Wang, J.: l1-minimization algorithms for sparse signal reconstruction based on a projection neural network. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 1–10 (2015)

    Article  Google Scholar 

  36. Zhang, Y., Yang, M., Huang, H., Hu, H.: New discrete solution model for solving future different-level linear inequality and equality with robot manipulator control. IEEE Trans. Industr. Inf. 1(5), 1975–1984 (2018)

    Google Scholar 

  37. Zhang, Y., Li, J., Li, S., Chen, D., He, L.: Optimal zeroing dynamics with applications to control of serial and parallel manipulators. Optim. Control Appl. Methods 3, 9 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Zhang, Y., Guo, J., Zhang, D., Qiu, B., Yang, Z.: Output tracking of time-varying linear system using ZD controller with pseudo division-by-zero phenomenon illustrated. In: ECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 3075–3080 (2017)

  39. Hu, C., Guo, D., Kang, X., Zhang, Y.: Zhang dynamics tracking control of varactor system with stability analysis. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 166–171 (2017)

  40. Stebler, S., Campobasso, M., Kidambi, K., Mackunis, W., Reyhanoglu, M.: Dynamic neural network-based sliding mode estimation of quadrotor systems. American Control Conference, pp. 2600–2605 (2017)

  41. Zhang, Z., Yu, J., Li, Y., Zhang, X.: A new neural-dynamic control method of position and angular stabilization for autonomous quadrotor UAVs. IEEE International Conference on Fuzzy Systems, pp. 850–855 (2016)

  42. Das, A., Lewis, F., Subbarao, K.: Neural network based robust backstepping control approach for quadrotors. Aiaa J. 1–17 (2013)

  43. Zhang, Z., Zheng, L., Qi, G.: A varying-parameter convergent neural dynamic controller of multi-rotor UAVs for tracking time-varying tasks. IEEE Trans. Veh. Technol. 67(6), 4793–4805 (2018)

    Article  Google Scholar 

  44. Zheng, L., Zhang, Z.: Convergence and robustness analysis of novel adaptive multilayer neural dynamics-based controllers of multirotor UAVs. IEEE Trans. Cybern. 1–14 (2019). https://doi.org/10.1109/TCYB.2019.2923642

  45. Zhang, Z., Zhou, B., Zheng, L., Zhang, Z., Song, C., Pei, H.: A varying-parameter adaptive multi-layer neural dynamic method for designing controllers and application to unmanned aerial vehicles. IEEE Trans. Intell. Transp. Syst. 1–13 (2020). https://doi.org/10.1109/TITS.2020.2983522

  46. Glida, H., Abdou, L., Chelihi, A., Sentouh, C., Hasseni, S.E.I.: Optimal model-free backstepping control for a quadrotor helicopter. Nonlinear Dyn. 100, 3449–3468 (2020)

  47. Zhu, W., Du, H., Cheng, Y., Chu, Z.: Hovering control for quadrotor aircraft based on finite-time control algorithm. Nonlinear Dyn. 8(8), 2359–2369 (2017)

    Article  Google Scholar 

  48. Dolatabadi, S.H., Yazdanpanah, M.J.: MIMO sliding mode and backstepping control for a quadrotor UAV. Electr. Eng. 994–999 (2015). https://doi.org/10.1109/IranianCEE.2015.7146356

  49. Guo, D., Zhang, Y.: Novel recurrent neural network for time-varying problems solving. IEEE Comput. Intell. Mag. 7(4), 61–65 (2012)

    Article  Google Scholar 

  50. Zhang, Y., Guo, X., Ma, W., Chen, K., and Cai, B.: MATLAB simulink modeling and simulation of Zhang neural network for online time-varying matrix inversion. IEEE International Conference on Networking, Sensing and Control, pp. 1480–1485 (2008)

  51. Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. PNAS, USA 7, 9 (1982)

    MathSciNet  MATH  Google Scholar 

  52. Hopfield, J., Tank, D.: Neural computation of decisions in optimization problems. Biol. Cybern. 5(2), 141–152 (1985)

    MATH  Google Scholar 

  53. Xia, Y.: A new neural network for solving linear and quadratic programming problems. IEEE Trans. Neural Netw. 7(6), 1544–1548 (1996)

    Article  Google Scholar 

  54. Xia, Y., Wang, J.: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints. IEEE Trans. Circuits Syst. 51(7), 1385–1394 (2004)

    Article  MathSciNet  Google Scholar 

  55. Koteich, M., Moing, T.L., Janot, A., Defay, F.: A real-time observer for UAVs brushless motors. Electronics, control, measurement, signals and their application to mechatronics, pp. 1–5 (2013)

  56. Sanchez, A., Carrillo, L.R.G., Rondon, E., Lozano, R., Garcia, O.: Hovering flight improvement of a quad-rotor mini UAV using brushless dc motors. J. Intell. Robot. Syst. 61(1–4), 85–101 (2011)

    Article  Google Scholar 

  57. Fornasini, E., Lepschy, A.: A controllability criterion for continuous linear time-invariant systems. IEEE Trans. Autom. Control 20(5), 716–716 (1975)

    Article  Google Scholar 

  58. Julkananusart, A., Nilkhamhang, I.: Quadrotor tuning for attitude control based on double-loop PID controller using fictitious reference iterative tuning (FRIT). IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, pp. 4865–4870 (2015)

  59. Li, J., Zhang, Y., Li, S., Mao, M.: New discretization-formula-based zeroing dynamics for real-time tracking control of serial and parallel manipulators. IEEE Trans. Ind. Inf. 14, 3416–3425 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The paper was submitted for review in May 19, 2020. This work was supported in part by the National Natural Science Foundation under Grants 61976096, 61603142 and 61633010, Guangdong Basic and Applied Basic Research Foundation under Grant 2020B1515120047, the Guangdong Foundation for Distinguished Young Scholars under Grant 2017A030306009, the Guangdong Special Support Program under Grant 2017TQ04X475, the Fundamental Research Funds for Central Universities under Grant x2zdD2182410, the Scientific Research Starting Foundation of South China University of Technology, the National Key Research and Development Program of China under Grant 2017YFB1002505, the National Key Basic Research Program of China (973 Program) under Grant 2015CB351703, Guangdong Key Research and Development Program under Grant 2018B030339001, Guangdong Natural Science Foundation Research Team Program 1414060000024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Zhang.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chen, T. & Zheng, L. A multilayer neural dynamic controller design method of quadrotor UAV for completing time-varying tasks. Nonlinear Dyn 104, 3597–3616 (2021). https://doi.org/10.1007/s11071-021-06445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06445-9

Keywords

Navigation