Skip to main content
Log in

Finite-time stabilization via output feedback for high-order planar systems subjected to an asymmetric output constraint

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article addresses the problem of finite-time stabilization via output feedback for high-order planar systems subjected to an asymmetric output constraint. By delicately exploring the features of nonlinearities and utilizing skillful manipulations of signum functions, a new fraction-type asymmetric barrier Lyapunov function and a distinctive non-smooth state observer are developed. On the basis of the proposed barrier Lyapunov function along with the state observer, the celebrated adding a power integrator technique is elegantly renovated to develop a novel approach by which a continuous output feedback finite-time stabilizer is constructed in a systematic fashion while ensuring the fulfillment of a pre-specified asymmetric output constraint. The presented scheme is a unification approach able to achieve the finite-time stabilization via output feedback for systems subjected to or free from output constraints simultaneously, without needing to change both the controller and observer structures. A numerical is provided to illustrate the superiority of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. That is, \(\eta (t)\) is a maximal solution (for the definition, see [33]) defined on \([t_0,\infty )\).

  2. For any \(\eta (t_0)\in {\mathbb {M}}_n(\kappa _l,\kappa _u)\), the solution of system (2) is in general not unique because \(f(\eta ,t)\) is only continuous [33].

  3. \({\dot{V}}_1(x_1):=( \partial V_1(x_1)/\partial x_1 ){\dot{x}}_1\) includes the variable \(x_2\) and the function \(\phi _1(x_1,t)\); thus, it is directly related to \((x,t)\in {\mathbb {M}}_2(\kappa _l,\kappa _u)\times {\mathbb {R}}^+\).

  4. We adapt the fact that any real-valued continuous function has a nonnegative smooth upper bound function (see, e.g., [36, Theorem 6.21, p. 136]).

References

  1. Qian, C.: Global synthesis of nonlinear systems with uncontrollable linearization. Ph.D. thesis, Department of Electrical Engineering and Computer Science, Case Western Reserve University (2001)

  2. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    Article  MathSciNet  Google Scholar 

  3. Lin, W., Qian, C.: Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems. Syst. Control Lett. 39(5), 339–351 (2000)

    Article  MathSciNet  Google Scholar 

  4. Qian, C., Lin, W.: Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems. IEEE Trans. Autom. Control 51(9), 1457–1471 (2006)

    Article  MathSciNet  Google Scholar 

  5. Du, H., Qian, C., Li, S., Chu, Z.: Global sampled-data output feedback stabilization for a class of uncertain nonlinear systems. Automatica 99, 403–411 (2019)

    Article  MathSciNet  Google Scholar 

  6. Gao, F., Wu, Y.: Global stabilisation for a class of more general high-order time-delay nonlinear systems by output feedback. Int. J. Control 88(8), 1540–1553 (2015)

    Article  MathSciNet  Google Scholar 

  7. Sun, Z.Y., Shao, Y., Chen, C.C.: Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica 106, 339–348 (2019)

    Article  MathSciNet  Google Scholar 

  8. Gao, F., Wu, Y., Li, H., Liu, Y.: Finite-time stabilisation for a class of output-constrained nonholonomic systems with its application. Int. J. Syst. Sci. 49(10), 2155–2169 (2018)

    Article  MathSciNet  Google Scholar 

  9. Man, Y., Liu, Y.: Global output-feedback stabilization for high-order nonlinear systems with unknown growth rate. Int. J. Robust Nonlinear Control 27(5), 804–829 (2017)

    Article  MathSciNet  Google Scholar 

  10. Gao, F., Wu, Y., Liu, Y.: Finite-time stabilization for a class of switched stochastic nonlinear systems with dead-zone input nonlinearities. Int. J. Robust Nonlinear Control 28(9), 3239–3257 (2018)

    Article  MathSciNet  Google Scholar 

  11. Sun, Z.Y., Dong, Y.Y., Chen, C.C.: Global fast finite-time partial state feedback stabilization of high-order nonlinear systems with dynamic uncertainties. Inf. Sci. 484, 219–236 (2019)

    Article  MathSciNet  Google Scholar 

  12. Man, Y., Liu, Y.: Global adaptive stabilization and practical tracking for nonlinear systems with unknown powers. Automatica 100, 171–181 (2019)

    Article  MathSciNet  Google Scholar 

  13. Liu, Y.: Global finite-time stabilization via time-varying feedback for uncertain nonlinear systems. SIAM J. Control Optim. 52(3), 1886–1913 (2014)

    Article  MathSciNet  Google Scholar 

  14. Li, F., Liu, Y.: Global finite-time stabilization via time-varying output-feedback for uncertain nonlinear systems with unknown growth rate. Int. J. Robust Nonlinear Control 27(17), 4050–4070 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Huang, S., Xiang, Z.: Finite-time stabilization of switched stochastic nonlinear systems with mixed odd and even powers. Automatica 73, 130–137 (2016)

    Article  MathSciNet  Google Scholar 

  16. Shen, Y., Huang, Y.: Global finite-time stabilisation for a class of nonlinear systems. Int. J. Syst. Sci. 43(1), 73–78 (2012)

    Article  MathSciNet  Google Scholar 

  17. Chen, C.C., Sun, Z.Y.: Fixed-time stabilisation for a class of high-order non-linear systems. IET Control Theory Appl. 12(18), 2578–2587 (2018)

    Article  Google Scholar 

  18. Song, J., Niu, Y., Zou, Y.: Finite-time sliding mode control synthesis under explicit output constraint. Automatica 65, 111–114 (2016)

    Article  MathSciNet  Google Scholar 

  19. Jin, X., Xu, J.X.: A barrier composite energy function approach for robot manipulators under alignment condition with position constraints. Int. J. Robust Nonlinear Control 24(17), 2840–2851 (2014)

    Article  MathSciNet  Google Scholar 

  20. Jin, X.: Iterative learning control for output-constrained nonlinear systems with input quantization and actuator faults. Int. J. Robust Nonlinear Control 28(2), 729–741 (2018)

    Article  MathSciNet  Google Scholar 

  21. He, W., Ge, S.S.: Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66, 146–154 (2016)

    Article  MathSciNet  Google Scholar 

  22. Jin, X.: Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Trans. Autom. Control 64(17), 3046–3053 (2019)

    Article  MathSciNet  Google Scholar 

  23. Jin, X., Xu, J.X.: Iterative learning control for output-constrained systems with both parametric and nonparametric uncertainties. Automatica 49(8), 2508–2516 (2013)

    Article  MathSciNet  Google Scholar 

  24. Jin, X.: Nonrepetitive trajectory tracking for nonlinear autonomous agents with asymmetric output constraints using parametric iterative learning control. Int. J. Robust Nonlinear Control 29(6), 1941–1955 (2019)

    Article  MathSciNet  Google Scholar 

  25. Chen, C.C., Chen, G.S.: A new approach to stabilization of high-order nonlinear systems with an asymmetric output constraint. Int. J. Robust Nonlinear Control 30(20), 756–775 (2020)

    Article  MathSciNet  Google Scholar 

  26. Niu, B., Xiang, Z.: State-constrained robust stabilisation for a class of high-order switched non-linear systems. IET Control Theory Appl. 9(12), 1901–1908 (2015)

    Article  MathSciNet  Google Scholar 

  27. Guo, T., Wang, X., Li, S.: Stabilisation for a class of high-order non-linear systems with output constraints. IET Control Theory Appl. 10(16), 2128–2135 (2016)

    Article  MathSciNet  Google Scholar 

  28. Ma, R., Jiang, B., Liu, Y.: Finite-time stabilization with output-constraints of a class of high-order nonlinear systems. Int. J. Control Autom. Syst. 16(3), 945–952 (2018)

    Article  Google Scholar 

  29. Huang, S., Xiang, Z.: Finite-time stabilisation of a class of switched nonlinear systems with state constraints. Int. J. Control 91(6), 1300–1313 (2018)

    Article  MathSciNet  Google Scholar 

  30. Chen, C.C., Sun, Z.Y.: A unified approach to finite-time stabilization of high-order nonlinear systems with an asymmetric output constraint. Automatica 111, 108581 (2020)

    Article  MathSciNet  Google Scholar 

  31. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  Google Scholar 

  32. Moulay, E., Perruquetti, W.: Finite time stability conditions for non-autonomous continuous system. Int. J. Control 81(5), 797–803 (2008)

    Article  MathSciNet  Google Scholar 

  33. Hale, J.K.: Ordinary Differential Equations. Krieger Publishing Company, Malabar (1980)

    MATH  Google Scholar 

  34. Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  35. Poznyak, A.S.: Advanced Mathematical Tools for Automatic Control Engineers. Vol. 1: Deterministic Techniques. New York: Elsevier (2008)

  36. Lee, J.M.: Introduction to Smooth Manifolds, 2nd edn. Springer, Berlin (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Science and Technology (MOST), Taiwan, under Grant MOST 109-2221-E-006-089-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Chiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CC., Chen, GS. & Sun, ZY. Finite-time stabilization via output feedback for high-order planar systems subjected to an asymmetric output constraint. Nonlinear Dyn 104, 2347–2361 (2021). https://doi.org/10.1007/s11071-021-06402-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06402-6

Keywords

Navigation