Skip to main content
Log in

On q-variant of Dai–Yuan conjugate gradient algorithm for unconstrained optimization problems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose a modified q-Dai–Yuan (q-DY) conjugate gradient algorithm based on q-gradient for solving unconstrained optimization problems. The q-gradient is calculated based on q-derivative that requires a dilation parameter q for controlling the balance between the local and global search. The strong global convergence of the algorithm is proved under standard Wolfe conditions, and numerical results show the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed, A., Moinuddin, M., Al-Saggaf, U.M.: \(q\)-state space least mean family of algorithms. Circuits Syst. Signal Process. 37(2), 729–751 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Baali, M.: Descent property and global convergence of the fletcher-reeves method with inexact line search. IMA J. Numer. Anal. 5(1), 121–124 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Al-Saggaf, U.M., Moinuddin, M., Arif, M., Zerguine, A.: The q-least mean squares algorithm. Sig. Process. 111, 50–60 (2015)

    Article  Google Scholar 

  4. Andrei, N.: Nonlinear Conjugate Gradient Methods for Unconstrained Optimization. Springer, Berlin (2020)

    Book  MATH  Google Scholar 

  5. Aral, A., Gupta, V., Agarwal, R.P., et al.: Applications of q-Calculus in Operator Theory. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  6. Arif, M., Naseem, I., Moinuddin, M., Khan, S.S., Ammar, M.M.: Adaptive noise cancellation using q-lms. In: 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT), pp. 1–4. IEEE (2017)

  7. Asad, J., Mallick, P., Samei, M., Rath, B., Mohapatra, P., Shanak, H., Jarrar, R.: Asymmetric variation of a finite mass harmonic like oscillator. Results Phys. 19, 103335 (2020)

    Article  Google Scholar 

  8. Axelsson, O., Kaporin, I.: On the sublinear and superlinear rate of convergence of conjugate gradient methods. Numer. Algorithms 25(1–4), 1–22 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Balaram, B., Narayanan, M., Rajendrakumar, P.: Optimal design of multi-parametric nonlinear systems using a parametric continuation based genetic algorithm approach. Nonlinear Dyn. 67(4), 2759–2777 (2012)

    Article  MathSciNet  Google Scholar 

  10. Bangerezako, G.: Variational q-calculus. J. Math. Anal. Appl. 289(2), 650–665 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beckermann, B., Kuijlaars, A.B.: Superlinear convergence of conjugate gradients. SIAM J. Numer. Anal. 39(1), 300–329 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, London (2014)

    MATH  Google Scholar 

  13. Chakraborty, S.K., Panda, G.: Newton like line search method using q-calculus. In: International Conference on Mathematics and Computing, pp. 196–208. Springer (2017)

  14. Chakraborty, S.K., Panda, G.: q-Line Search Scheme for Optimization Problem. arXiv:1702.01518 (2017)

  15. Chen, Y., Cao, M., Yang, Y.: A new accelerated conjugate gradient method for large-scale unconstrained optimization. J. Inequal. Appl. 2019(1), 1–13 (2019)

    Article  MathSciNet  Google Scholar 

  16. Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dai, Z., Wen, F.: Another improved Wei–Yao–Liu nonlinear conjugate gradient method with sufficient descent property. Appl. Math. Comput. 218(14), 7421–7430 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Dai, Z.F.: Two modified hs type conjugate gradient methods for unconstrained optimization problems. Nonlinear Anal. Theory Methods Appl. 74(3), 927–936 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ernst, T.: A Comprehensive Treatment of q-Calculus. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  21. Fletcher, R., Powell, M.J.: A rapidly convergent descent method for minimization. Comput. J. 6(2), 163–168 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–154 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gouvêa, É.J., Regis, R.G., Soterroni, A.C., Scarabello, M.C., Ramos, F.M.: Global optimization using q-gradients. Eur. J. Oper. Res. 251(3), 727–738 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16(1), 170–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2(1), 35–58 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Hestenes, M.R., Stiefel, E., et al.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jackson, F.: q-difference equations. Am. J. Math. 32(4), 305–314 (1910)

    Article  MATH  Google Scholar 

  28. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Modell. Numer. Optim. 4(2), 150–194 (2013)

    MATH  Google Scholar 

  29. Jennings, A.: Influence of the eigenvalue spectrum on the convergence rate of the conjugate gradient method. IMA J. Appl. Math. 20(1), 61–72 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jiang, X., Han, L., Jian, J.: A globally convergent mixed conjugate gradient method with wolfe line search. Math. Numer. Sin 34(1), 103–112 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Jiang, X.Z., Jian, J.B.: A sufficient descent Dai–Yuan type nonlinear conjugate gradient method for unconstrained optimization problems. Nonlinear Dyn. 72(1–2), 101–112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kac, V., Cheung, P.: Quantum Calculus. Springer, Berlin (2001)

    MATH  Google Scholar 

  33. Lai, K.K., Mishra, S.K., Panda, G., Chakraborty, S.K., Samei, M.E., Ram, B.: A limited memory q-BFGS algorithm for unconstrained optimization problems. J. Appl. Math. Comput., 1–20 (2020)

  34. Lai, K.K., Mishra, S.K., Ram, B.: On q-quasi-newton’s method for unconstrained multiobjective optimization problems. Mathematics 8(4), 616 (2020)

    Article  Google Scholar 

  35. Mishra, S.K., Panda, G., Ansary, M.A.T., Ram, B.: On q-newton’s method for unconstrained multiobjective optimization problems. J. Appl. Math. Comput. 37(1–2), 391–410 (2020)

    Article  MathSciNet  Google Scholar 

  36. Mishra, S.K., Ram, B.: Conjugate gradient methods. In: Introduction to Unconstrained Optimization with R, pp. 211–244. Springer (2019)

  37. Mishra, S.K., Ram, B.: Newton’s method. In: Introduction to Unconstrained Optimization with R, pp. 175–209. Springer (2019)

  38. Mishra, S.K., Ram, B.: Steepest descent method. In: Introduction to Unconstrained Optimization with R, pp. 131–173. Springer (2019)

  39. Notay, Y.: On the convergence rate of the conjugate gradients in presence of rounding errors. Numer. Math. 65(1), 301–317 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Polat, E., Ribe’re, G.: Note sur la convergence de direction conjuge’cs. Rev. Francaise Informat conjugate gradient methods Research Operational, 3e Anne’s p. 16 (1969)

  41. Polyak, B.T.: The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9(4), 94–112 (1969)

    Article  MATH  Google Scholar 

  42. Price, W.L.: A controlled random search procedure for global optimisation. Comput. J. 20(4), 367–370 (1977)

    Article  MATH  Google Scholar 

  43. Rajković, P., Stanković, M., Marinković, D.S.: Mean value theorems in g-calculus. Matematički vesnik 54(3–4), 171–178 (2002)

    MathSciNet  MATH  Google Scholar 

  44. Rajković, P.M., Stanković, M.S., Marinković, S.D.: On-iterative methods for solving equations and systems. Novi Sad J. Math. 33(2), 127–137 (2003)

    MathSciNet  MATH  Google Scholar 

  45. Sadiq, A., Khan, S., Naseem, I., Togneri, R., Bennamoun, M.: Enhanced q-least mean square. Circuits Syst. Signal Process. 38(10), 4817–4839 (2019)

    Article  Google Scholar 

  46. Samei, M.E., Yang, W.: Existence of solutions for k-dimensional system of multi-term fractional q-integro-differential equations under anti-periodic boundary conditions via quantum calculus. Math. Methods Appl. Sci. 43(7), 4360–4382 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Soterroni, A.C.: O método do q-gradiente para otimizaçao global. INPE, Aline Cristina Soterroni-Sao Jose dos Campos (2012)

  48. Soterroni, A.C., Galski, R.L., Ramos, F.M.: The q-gradient vector for unconstrained continuous optimization problems. In: Operations Research Proceedings 2010, pp. 365–370. Springer (2011)

  49. Soterroni, A.C., Galski, R.L., Ramos, F.M.: The q-gradient method for continuous global optimization. In: AIP Conference Proceedings, vol. 1558, pp. 2389–2393. American Institute of Physics (2013)

  50. Soterroni, A.C., Galski, R.L., Scarabello, M.C., Ramos, F.M.: The q-g method. SpringerPlus 4(1), 647 (2015)

    Article  Google Scholar 

  51. Tang, C.M., Wei, Z.X., Li, G.Y.: A new version of the Liu–Storey conjugate gradient method. Appl. Math. Comput. 189(1), 302–313 (2007)

    MathSciNet  MATH  Google Scholar 

  52. Tariboon, J., Ntouyas, S.K.: Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013(1), 282 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015(1), 1–19 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, L., Gao, H., Chen, Z., Sun, Q., Zhang, X.: Multi-objective global optimal parafoil homing trajectory optimization via gauss pseudospectral method. Nonlinear Dyn. 72(1–2), 1–8 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Science and Engineering Research Board (Grant No. DST-SERBMTR-2018/000121). The second author was supported by Bu-Ali Sina University and the fourth author was supported by University Grants Commission (IN) (Grant No. UGC-2015-UTT-59235). We are grateful to the anonymous referees for their careful reading of the manuscript and for making insightful comments toward the betterment of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Esmael Samei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.K., Samei, M.E., Chakraborty, S.K. et al. On q-variant of Dai–Yuan conjugate gradient algorithm for unconstrained optimization problems. Nonlinear Dyn 104, 2471–2496 (2021). https://doi.org/10.1007/s11071-021-06378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06378-3

Keywords

Mathematics Subject Classification

Navigation