Skip to main content
Log in

Analysis and resistance of dynamic degradation of digital chaos via functional graphs

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To analyze the effects of finite computational precision on the dynamical degradation of digital chaotic maps, we designed a periodic orbit detection algorithm that is based on a functional graph. The algorithm can calculate the transient length of each chaotic orbit, weak secret keys, fixed points and the period distribution of digital chaotic systems with various limited computational precisions accurately. Furthermore, an effective method based on quadratic congruential generator is proposed to counteract the performance degradation of digital chaos. Based on the method, a new chaotic model can be constructed with full cycle. Numerical experiments are carried out to evaluate the feasibility of the proposed scheme in terms of phase portrait, autocorrelation function, complexity and periodicity analysis. Finally, as an application, a pseudorandom bit generator with satisfactory performance is designed for chaotic secure communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Teh, J.S., Tan, K.J., Alawida, M.: A chaos-based keyed hash function based on fixed point representation. Clust. Comput. 22(2), 649–660 (2019)

    Article  Google Scholar 

  2. Li, Y.T., Li, X., Liu, X.W.: A fast and efficient hash function based on generalized chaotic mapping with variable parameters. Neural Comput. Appl. 28(6), 1405–1415 (2017)

    Article  Google Scholar 

  3. Teh, J.S., Samsudin, A., Akhavan, A.: Parallel chaotic hash function based on the shuffle-exchange network. Nonlinear Dyn. 81(3), 1067–1079 (2015)

    Article  Google Scholar 

  4. Garcia-Bosque, M., Perez-Resa, A., Sanchez-Azqueta, C., Aldea, C., Celma, S.: Chaos-based bitwise dynamical pseudorandom number generator on FPGA. IEEE Trans. Instrum. Meas. 68(1), 291–293 (2019)

    Article  Google Scholar 

  5. Tutueva, A.V., Nepomuceno, E.G., Karimov, A.I., Andreev, V.S., Butusov, D.N.: Adaptive chaotic maps and their application to pseudorandom numbers generation. Chaos, Solitons Fractals 133, 109615 (2020)

    Article  MathSciNet  Google Scholar 

  6. Farri, E., Ayubi, P.: A blind and robust video watermarking based on IWT and new 3D generalized chaotic sine map. Nonlinear Dyn. 93(4), 1875–1897 (2018)

    Article  Google Scholar 

  7. Hagras, E.A.A., Saber, M.: Low power and high-speed FPGA implementation for 4D memristor chaotic system for image encryption. Multimed. Tools Appl. 79(31–32), 23203–23222 (2020)

    Article  Google Scholar 

  8. Chai, X.L., Fu, X.L., Gan, Z.H., Lu, Y., Chen, Y.R.: A color image cryptosystem based on dynamic DNA encryption and chaos. Sig. Process. 155, 44–62 (2019)

    Article  Google Scholar 

  9. Grebogi, C., Ott, E., Yorke, J.A.: Roundoff-induced periodicity and the correlation dimension of chaotic attractors. Phys. Rev. A 38(7), 3688–3692 (1988)

    Article  MathSciNet  Google Scholar 

  10. Li, S.J., Chen, G.R., Mou, X.Q.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc. Chaos 15(10), 3119–3151 (2005)

    Article  MathSciNet  Google Scholar 

  11. Yin, R.M., Wang, J., Yuan, J., Shan, X.M., Wang, X.Q.: Weak key analysis for chaotic cipher based on randomness properties. Sci. China Inf. Sci. 55(5), 1162–1171 (2012)

    Article  MathSciNet  Google Scholar 

  12. Persohn, K.J., Povinelli, R.J.: Analyzing Logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos, Solitons Fractals 45(3), 238–245 (2012)

    Article  Google Scholar 

  13. Chen, F., Wong, K.W., Liao, X.F., Xiang, T.: Analyzing Period distribution of generalized discrete Arnold cat map. Theoret. Comput. Sci. 552, 13–25 (2014)

    Article  MathSciNet  Google Scholar 

  14. Li, C.Q., Feng, B.B., Li, S.J., Kurths, J., Chen, G.R.: Dynamic analysis of digital chaotic maps via state-mapping networks. IEEE Trans. Circ. Syst. I Regul. Pap. 66(6), 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  15. Fan, C.L., Ding, Q.: Analysing the dynamics of digital chaotic maps via a new period search algorithm. Nonlinear Dyn. 97(1), 831–841 (2019)

    Article  Google Scholar 

  16. Wheeler, D., Matthews, R.: Supercomputer investigations of a chaotic encryption algorithm. Cryptologia 15(2), 140–152 (1991)

    Article  Google Scholar 

  17. Hua, Z.Y., Zhou, Y.C.: One-dimensional nonlinear model for producing chaos. IEEE Trans. Circuits Syst. I Regul. Pap. 65(1), 235–246 (2018)

    Article  Google Scholar 

  18. Masuda, N., Aihara, K.: Cryptosystems with discretized chaotic maps. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 49(12), 28–40 (2002)

    Article  MathSciNet  Google Scholar 

  19. Wang, Q.X., Yu, S.M., Li, C.Q., Lu, J.H., Fang, X.L., Guyeux, C., Bahi, J.M.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I Regul. Pap. 63(3), 401–412 (2016)

    Article  MathSciNet  Google Scholar 

  20. Hu, H.P., Deng, Y.S., Liu, L.F.: Counteracting the dynamical degradation of digital chaos via hybrid control. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1970–1984 (2014)

    Article  Google Scholar 

  21. Fan, C.L., Ding, Q., Tse, C.K.: Counteracting the dynamical degradation of digital chaos by applying stochastic jump of chaotic orbits. Int. J. Bifurc. Chaos 29(8), 1930023 (2019)

    Article  MathSciNet  Google Scholar 

  22. Alawida, M., Teh, J.S., Samsudin, A., Alshoura, W.H.: An image encryption scheme based on hybridizing digital chaos and finite state machine. Sig. Process. 164, 249–266 (2019)

    Article  Google Scholar 

  23. Liu, C.Y., Ding, Q.: A modified algorithm for the logistic sequence based on PCA. IEEE Access 8, 45254–45262 (2020)

    Article  Google Scholar 

  24. Hu, H.P., Xu, Y., Zhu, Z.Q.: A method of improving the properties of digital chaotic system. Chaos, Solitons Fractals 38(2), 439–446 (2008)

    Article  Google Scholar 

  25. Liu, Y.Q., Luo, Y.L., Song, S.X., Cao, L.C., Liu, J.X., Harkin, J.: Counteracting dynamical degradation of digital chaotic Chebyshev map via perturbation. Int. J. Bifurc. Chaos 27(3), 1750033 (2016)

    Article  MathSciNet  Google Scholar 

  26. Wang, Y., Tong, D.B., Chen, Q.Y., Zhou, W.N.: Exponential synchronization of chaotic systems with stochastic perturbations via quantized feedback control. Circ. Syst. Sig. Process. 39(1), 474–491 (2020)

    Article  Google Scholar 

  27. Zheng, J., Hu, H.P., Xia, X.: Applications of symbolic dynamics in counteracting the dynamical degradation of digital chaos. Nonlinear Dyn. 94(2), 1535–1546 (2018)

    Article  Google Scholar 

  28. Liu, S.B., Sun, J., Xu, Z.Q., Liu, J.S.: Digital chaotic sequence generator based on coupled chaotic systems. Chin. Phys. B 18(12), 5219–5522 (2009)

    Article  Google Scholar 

  29. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  30. Liu, L.F., Liu, B.C., Hu, H.P., Miao, S.X.: Reducing the dynamical degradation by bi-coupling digital chaotic maps. Int. J. Bifurc. Chaos 28(5), 1850059 (2018)

    Article  MathSciNet  Google Scholar 

  31. Liu, L.F., Miao, S.X.: Delay-introducing method to improve the dynamical degradation of a digital chaotic map. Inf. Sci. 396, 1–13 (2017)

    Article  Google Scholar 

  32. Fan, C.L., Ding, Q.: Effects of limited computational precision on the discrete chaotic sequences and the design of related solutions. Complexity 27, 3510985 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 61471158) and Natural Science Foundation of Heilongjiang Province (LH2019F048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Ding, Q. Analysis and resistance of dynamic degradation of digital chaos via functional graphs. Nonlinear Dyn 103, 1081–1097 (2021). https://doi.org/10.1007/s11071-020-06160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06160-x

Keywords

Navigation