Skip to main content
Log in

Prediction of higher-order harmonics generation due to contact stiffness hysteresis using Harmonic Balance: theory and experimental validation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the presented paper, an analytical approach based on the Harmonic Balance method is used to evaluate amplitudes of higher-order harmonics generated due to the interaction of a propagating shear wave with surfaces in frictional contact. The motion between surfaces is initially assumed to be of symmetric hysteretic stick-and-slip type. Experimental investigation is performed on steel samples with prepared contact surfaces, in order to validate the introduced solution approach. It shows that the hysteretic behavior obtained from the experiment exhibits asymmetric characteristic features. Consequently, a new asymmetric description of the hysteretic stress–strain relation is developed and used to confirm these findings. As a result, both qualitative and quantitative agreement between considered investigation methods are achieved. Finally, the identification study shows the impact of higher-order harmonics on particular features of the stiffness hysteresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aymerich, F., Staszewski, W.J.: Experimental study of impact-damage detection in composite laminates using a cross-modulation vibro-acoustic technique. Struct. Health Monit. 9(6), 541–553 (2010). https://doi.org/10.1177/1475921710365433

    Article  Google Scholar 

  2. Bonnet, M., Mukherjee, S.: Implicit bem formulations for usual and sensitivity problems in elasto-plasticity using the consistent tangent operator concept. Int. J. Solids Struct. 33(30), 4461–4480 (1996). https://doi.org/10.1016/0020-7683(95)00279-0

    Article  MATH  Google Scholar 

  3. Ciavarella, M., Berto, F.: A simplified extension of the crack analogue model for fretting fatigue with varying normal load. Theor. Appl. Fracture Mech. 91, 37–43 (2017). https://doi.org/10.1016/j.tafmec.2017.03.011. Mixed Mode Fracture: Recent Developments

    Article  Google Scholar 

  4. Ciavarella, M., Papangelo, A.: A generalized johnson parameter for pull-off decay in the adhesion of rough surfaces. Phys. Mesomech. 21, 67–75 (2018). https://doi.org/10.1134/S1029959918010095

    Article  Google Scholar 

  5. Deng, M.: Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 94(6), 4152–4159 (2003). https://doi.org/10.1063/1.1601312

    Article  Google Scholar 

  6. Frérot, L., Bonnet, M., Molinari, J.F., Anciaux, G.: A Fourier-accelerated volume integral method for elastoplastic contact. Comput. Methods Appl. Mech. Eng. 351, 951–976 (2019). https://doi.org/10.1016/j.cma.2019.04.006

    Article  MathSciNet  MATH  Google Scholar 

  7. Guha, A., Bijudas, C.R.: Influence of modal characteristics of a partially debonded piezoelectric transducer in higher and subharmonic modes generated in lamb wave. Struct. Control Health Monit. 25(10), e2239 (2018). https://doi.org/10.1002/stc.2239

    Article  Google Scholar 

  8. Jhang, K.Y.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009). https://doi.org/10.1007/s12541-009-0019-y. An erratum to this article is available at https://doi.org/10.1007/s12541-017-0018-3

  9. Klarbring, A., Ciavarella, M., Barber, J.: Shakedown in elastic contact problems with coulomb friction. Int. J. Solids Struct. 44(25), 8355–8365 (2007). https://doi.org/10.1016/j.ijsolstr.2007.06.013

    Article  MATH  Google Scholar 

  10. Klepka, A., Dziedziech, K., Spytek, J., Mrówka, J., Górski, J.: Experimental investigation of hysteretic stiffness related effects in contact-type nonlinearity. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4641-z

    Article  Google Scholar 

  11. Klepka, A., Straczkiewicz, M., Pieczonka, L., Staszewski, W.J., Gelman, L., Aymerich, F., Uhl, T.: Triple correlation for detection of damage-related nonlinearities in composite structures. Nonlinear Dyn. 81(1), 453–468 (2015). https://doi.org/10.1007/s11071-015-2004-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Le Bas, P.Y., Remillieux, M.C., Pieczonka, L., Ten Cate, J.A., Anderson, B.E., Ulrich, T.J.: Damage imaging in a laminated composite plate using an air-coupled time reversal mirror. Appl. Phys. Lett. 107(18), 184102 (2015). https://doi.org/10.1063/1.4935210

    Article  Google Scholar 

  13. Meo, M., Polimeno, U., Zumpano, G.: Detecting damage in composite material using nonlinear elastic wave spectroscopy methods. Appl. Compos. Mater. 15(3), 115–126 (2008). https://doi.org/10.1007/s10443-008-9061-7

    Article  Google Scholar 

  14. Muller, M., Sutin, A., Guyer, R., Talmant, M., Laugier, P., Johnson, P.A.: Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J. Acoust. Soc. Am. 118(6), 3946–3952 (2005). https://doi.org/10.1121/1.2126917

    Article  Google Scholar 

  15. Narisetti, R.K., Ruzzene, M., Leamy, M.J.: Study of wave propagation in strongly nonlinear periodic lattices using a harmonic balance approach. Wave Motion 49(2), 394–410 (2012). https://doi.org/10.1016/j.wavemoti.2011.12.005

    Article  MathSciNet  MATH  Google Scholar 

  16. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. WILEY-VCH Verlag GmbH & Co., KGaA, New York (2004)

    MATH  Google Scholar 

  17. O’Neill, B., Maev, R.G., Severin, F.: Distortion of shear waves passing through a friction coupled interface. AIP Conf. Proc. 557(1), 1261–1267 (2001). https://doi.org/10.1063/1.1373899

    Article  Google Scholar 

  18. Packo, P., Radecki, R., Leamy, M.J., Uhl, T., Staszewski, W.J.: Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation, chap. Modeling and Numerical Simulations in Nonlinear Acoustics Used for Damage Detection, pp. 103 – 137. Springer International Publishing (2019). https://doi.org/10.1007/978-3-319-94476-0

  19. Pecorari, C.: Adhesion and nonlinear scattering by rough surfaces in contact: beyond the phenomenology of the preisach-mayergoyz framework. J. Acoust. Soc. Am. 116(4), 1938–1947 (2004). https://doi.org/10.1121/1.1785616

    Article  Google Scholar 

  20. Pieczonka, L., Aymerich, F., Brozek, G., Szwedo, M., Staszewski, W.J., Uhl, T.: Modelling and numerical simulations of vibrothermography for impact damage detection in composites structures. Struct. Control Health Monit. 20(4), 626–638 (2013). https://doi.org/10.1002/stc.1483

    Article  Google Scholar 

  21. Radecki, R., Su, Z., Cheng, L., Packo, P., Staszewski, W.J.: Modelling nonlinearity of guided ultrasonic waves in fatigued materials using a nonlinear local interaction simulation approach and a spring model. Ultrasonics 84, 272–289 (2018). https://doi.org/10.1016/j.ultras.2017.11.008

    Article  Google Scholar 

  22. Shan, S., Cheng, L., Wen, F.: Design of nonlinear-Lamb-wave-based structural health monitoring systems with mitigated adhesive nonlinearity. Smart Mater. Struct. 27(10), 105006 (2018). https://doi.org/10.1088/1361-665x/aad938

    Article  Google Scholar 

  23. Shen, Y., Cesnik, C.E.: Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach. Ultrasonics 74, 106–123 (2017). https://doi.org/10.1016/j.ultras.2016.10.001

    Article  Google Scholar 

  24. Shui, G., Wang, Y.S., Huang, P., Qu, J.: Nonlinear ultrasonic evaluation of the fatigue damage of adhesive joints. NDT&E Int. 70, 9–15 (2015). https://doi.org/10.1016/j.ndteint.2014.11.002

    Article  Google Scholar 

  25. Solodov, I., Wackerl, J., Pfleiderer, K., Busse, G.: Nonlinear self-modulation and subharmonic acoustic spectroscopyfor damage detection and location. Appl. Phys. Lett. 84(26), 5386–5388 (2004). https://doi.org/10.1063/1.1767283

    Article  Google Scholar 

  26. Solodov, I.Y., Krohn, N., Busse, G.: Nonlinear ultrasonic NDT for early defect recognition and imaging. In: Proceedings of the 10th European Conference on Non-destructive Testing. Moscow (2010)

  27. Trojniar, T., Klepka, A., L.P., Staszewski, W.J.: Fatigue crack detection using nonlinear vibro-acoustic cross-modulations based on the luxemburg-gorky effect. In: Proc. SPIE Health Monit. Struct. Biol. Syst. 2014, vol. 9064 (2014). https://doi.org/10.1117/12.2046471

  28. Telles, J., Carrer, J.: Implicit procedures for the solution of elastoplastic problems by the boundary element method. Math. Comput. Model. 15(3), 303–311 (1991). https://doi.org/10.1016/0895-7177(91)90075-I

    Article  MATH  Google Scholar 

  29. Vien, B.S., Chiu, W.K., Rose, L.R.F.: Experimental investigation of second-harmonic lamb wave generation in additively manufactured aluminum. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 1(4), 2572–3901 (2018). https://doi.org/10.1115/1.4040390

    Article  Google Scholar 

  30. Wang, K., Li, Y., Su, Z., Guan, R., Lu, Y., Yuan, S.: Nonlinear aspects of “breathing” crack-disturbed plate waves: 3-d analytical modeling with experimental validation. Int. J. Mech. Sci. 159, 140–150 (2019). https://doi.org/10.1016/j.ijmecsci.2019.05.036

    Article  Google Scholar 

  31. Wang, K., Liu, M., Su, Z., Yuan, S., Fan, Z.: Analytical insight into “breathing” crack-induced acoustic nonlinearity with an application to quantitative evaluation of contact cracks. Ultrasonics 88, 157–167 (2018). https://doi.org/10.1016/j.ultras.2018.03.008

    Article  Google Scholar 

  32. Wang, X., Liu, M., Zhu, W.: On steady-state solutions of a wave equation by solving a delay differential equation with an incremental harmonic balance method. In: Volume 3: Modeling and Validation; Multi-Agent and Networked Systems; Path Planning and Motion Control; Tracking Control Systems; Unmanned Aerial Vehicles (UAVs) and Application; Unmanned Ground and Aerial Vehicles; Vibration in Mechanical Systems; Vibrations and Control of Systems; Vibrations: Modeling, Analysis, and Control, p. V003T39A002 (2018). https://doi.org/10.1115/DSCC2018-8933

  33. Zaitsev, V.Y., Gusev, V., Castagnède, B.: Observation of the “Luxemburg–Gorky effect” for elastic waves. Ultrasonics 40(1), 627–631 (2002). https://doi.org/10.1016/S0041-624X(02)00187-7

    Article  Google Scholar 

  34. Zhou, C., Hong, M., Su, Z., Wang, Q., Cheng, L.: Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network. Smart Mater. Struct. 22(1), 015018 (2012). https://doi.org/10.1088/0964-1726/22/1/015018

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was performed within the scope of the research Project 2015/17/B/ST8/03399 financed by the Polish National Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Radecki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radecki, R., Leamy, M.J., Packo, P. et al. Prediction of higher-order harmonics generation due to contact stiffness hysteresis using Harmonic Balance: theory and experimental validation. Nonlinear Dyn 103, 541–556 (2021). https://doi.org/10.1007/s11071-020-06127-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06127-y

Keywords

Navigation