Skip to main content
Log in

Adaptive fixed-time control for Lorenz systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the problem of fixed-time chaos suppression and stabilization of a class of Lorenz systems with uncertain parameters. Based on the fixed-time stability theory, adaptive control and backstepping algorithm, a novel adaptive practical fixed-time controller is proposed. It is shown that the presented control scheme can guarantee that all the signals of the closed-loop system are bounded and chaotic phenomenon is suppressed in the fixed time. Both the theoretical analysis and simulation results verify the effectiveness of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Macek, W.M.: Nonlinear dynamics and complexity in the generalized Lorenz system. Nonlinear Dyn. 94(4), 2957–2968 (2018)

    Article  Google Scholar 

  2. Moon, S., Seo, J.M., Baik, J.J.: High-dimensional generalizations of the Lorenz system and implications for predictability. Physica Scripta (2020). https://doi.org/10.1088/1402-4896/ab9d3e

    Article  Google Scholar 

  3. Dong, C., Liu, H., Li, H.: Unstable periodic orbits analysis in the generalized Lorenz-type system. J. Stat. Mech. Theory Exp. 2020, 073211 (2020)

    Article  MathSciNet  Google Scholar 

  4. Vincent, L.T., Yu, J.: Control of a chaotic system. Dyn. Control 1(1), 35–52 (1991)

    Article  MathSciNet  Google Scholar 

  5. Feki, M.: An adaptive feedback control of linearizable chaotic systems. Chaos Solitons Fract. 15, 883–890 (2003)

    Article  MathSciNet  Google Scholar 

  6. Peng, C.C., Chen, C.L.: Robust chaotic control of Lorenz system by backstepping design. Chaos Solitons Fract. 37, 598–608 (2008)

    Article  Google Scholar 

  7. Xie, W.X., Wen, C.Y., Li, Z.G.: Impulsive control for the stabilization and synchronization of Lorenz systems. Phys. Lett. A 275, 67–72 (2000)

    Article  MathSciNet  Google Scholar 

  8. Kose, E., Mhrc, A.: Comparative controlling of the Lorenz chaotic system using the SMC and APP methods. Math. Probl. Eng. (2018). https://doi.org/10.1155/2018/9612749

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, C., Ge, S.S.: Adaptive backstepping control of uncertain Lorenz system. Int. J. Bifurc. Chaos 11(4), 1115–1119 (2001)

    Article  MathSciNet  Google Scholar 

  10. Cai, G.L., Tu, W.T.: Adaptive backstepping control of the uncertain unified chaotic system. Int. J. Nonlinear Sci. 4(1), 17–24 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  12. Tong, S.C., Li, Y.M.: Robust adaptive fuzzy backstepping output feedback tracking control for nonlinear system with dynamic uncertainties. Sci. China Inf. Sci. 53(2), 307–324 (2010)

    Article  MathSciNet  Google Scholar 

  13. Tong, S.C., Li, Y.M.: Observer-based adaptive fuzzy backstepping control of uncertain nonlinear pure-feedback systems. Sci. China Inf. Sci. 57(1), 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  14. Ahn, K.K., Nam, D.N.C., Jin, M.: Adaptive backstepping control of an electrohydraulic actuator. IEEE/ASME Trans. Mechatron. 19(3), 987–995 (2013)

    Article  Google Scholar 

  15. Zheng, X.Y., Zhang, H., Yan, H.C.: Active full-vehicle suspension control via cloud-aided adaptive backstepping approach. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2891960

    Article  Google Scholar 

  16. Shieh, H.J., Shyu, K.K.: Nonlinear sliding-mode torque control with adaptive backstepping approach for induction motor drive. IEEE Trans. Ind. Electron. 46(2), 380–389 (1999)

    Article  Google Scholar 

  17. Sheng, D., Wei, Y.H., et al.: Adaptive backstepping control for fractional order systems with input saturation. J. Franklin Inst. 354(5), 2245–2268 (2017)

    Article  MathSciNet  Google Scholar 

  18. Dorato, P.: Short time stability in linear time-varying systems. Proc. IRE Int. Conv. Rec. Part 4, 83–87 (1961)

    Google Scholar 

  19. Fang, L., Ma, L., Ding, S., Zhao, D.: Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint. Appl. Math. Comput. 358, 63–79 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Du, H., Li, S., Qian, C.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56(11), 2711–2717 (2011)

    Article  MathSciNet  Google Scholar 

  21. Velmurugan, G., Rakkiyappan, R., Cao, J.: Finite-time synchronization of fractional-order memristor-based neural networks with time delays. Neural Netw. (2015). https://doi.org/10.1016/j.neunet.2015.09.012

    Article  MATH  Google Scholar 

  22. Wang, F., Chen, B., Lin, C., et al.: Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans. Cybern. 48(6), 1839–1848 (2018)

    Article  Google Scholar 

  23. Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer design, and output feedback. SIAM J. Control Optim. 47(4), 1814–1850 (2008)

    Article  MathSciNet  Google Scholar 

  24. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    Article  MathSciNet  Google Scholar 

  25. Jin, X.: Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Trans. Autom. Control 64(7), 3046–3053 (2019)

    Article  MathSciNet  Google Scholar 

  26. Tian, B.L., Zuo, Z.Y., et al.: A fixed-time output feedback control scheme for double integrator systems. Automatica 80, 17–24 (2017)

    Article  MathSciNet  Google Scholar 

  27. Zuo, Z.Y.: Fixed-time stabilization of general linear systems with input delay. J. Franklin Inst. 356(8), 4467–4477 (2019)

    Article  MathSciNet  Google Scholar 

  28. Zuo, Z., Han, Q., Ning, B., Ge, X., Zhang, X.: An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Trans. Ind. Inf. 114(6), 2322–2334 (2018)

    Article  Google Scholar 

  29. Liu, X., Chen, T.: Finite-time and fixed-time cluster synchronization with or without pinning control. IEEE Trans. Cybern. 48(1), 240–252 (2016)

    Article  Google Scholar 

  30. Yu, X., Li, P., Zhang, Y.: The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles. IEEE Trans. Ind. Electron. 65(5), 4135–4144 (2017)

    Article  Google Scholar 

  31. Zuo, Z.: Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory Appl. 9(4), 545–552 (2014)

    Article  MathSciNet  Google Scholar 

  32. Polyakov, A., Efifimov, D., Perruquetti, W.: Finite-time and fixed-time stabilization: implicit Lyapunov function approach. Automatica 51, 332–340 (2015)

    Article  MathSciNet  Google Scholar 

  33. Chen, M., Wang, H.Q., Liu, X.P.: Adaptive fuzzy practical fixed-time tracking control of nonlinear systems. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2959972

    Article  Google Scholar 

  34. Jiang, B., Hu, Q., Friswell, M.I.: Fixed-time attitude control for rigid spacecraft with actuator saturation and faults. IEEE Trans. Control Syst. Technol. 24(5), 1892–1898 (2016)

    Article  Google Scholar 

  35. Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 21(6), 686–702 (2011)

    Article  MathSciNet  Google Scholar 

  36. Zuo, Z., Tie, L.: Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47(6), 1366–1375 (2016)

    Article  MathSciNet  Google Scholar 

  37. Xiao, F., Wang, L.: Reaching agreement in finite time via continuous local state feedback. In: 2007 Chinese Control Conference, (2007). https://doi.org/10.1109/CHICC.2006.4347337

  38. Qian, C., Lin, W.: Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42(3), 185–200 (2001)

    Article  MathSciNet  Google Scholar 

  39. Wang, H., Chen, B., Lin, C.: Adaptive neural tracking control for a class of stochastic nonlinear systems. Int. J. Robust Nonlinear Control 24(7), 1262–1280 (2014)

    Article  MathSciNet  Google Scholar 

  40. Tian, B., Lu, H., Zuo, Z., et al.: Fixed-time leader-follower output feed-back consensus for second-order multiagent systems. IEEE Trans. Cybern. 49(4), 1545–1550 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61773072, 51939001, 61976033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanqing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yue, H., Liu, S. et al. Adaptive fixed-time control for Lorenz systems. Nonlinear Dyn 102, 2617–2625 (2020). https://doi.org/10.1007/s11071-020-06061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06061-z

Keywords

Navigation