Skip to main content
Log in

Analysis and active control of nonlinear vibration of composite lattice sandwich plates

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is devoted to investigate the nonlinear vibration characteristics and active control of composite lattice sandwich plates using piezoelectric actuator and sensor. Three types of the sandwich plates with pyramidal, tetrahedral and Kagome cores are considered. In the structural modeling, the von Kármán large deflection theory is applied to establish the strain–displacement relations. The nonlinear equations of motion of the structures are derived by Hamilton’s principle with the assumed mode method. The nonlinear free and forced vibration responses of the lattice sandwich plates are calculated. The velocity feedback control (VFC) and H control methods are applied to design the controller. The nonlinear vibration responses of the sandwich plates with pyramidal, tetrahedral and Kagome cores are compared. The influences of the ply angle of the laminated face sheets, the thicknesses of the lattice core and face sheets and the excitation amplitude on the nonlinear vibration behaviors of the sandwich plates are investigated. The correctness of the H control algorithm is verified by comparing with the experiment results reported in the literature. The controlled nonlinear vibration response of the sandwich plate is computed and compared with that of the uncontrolled structural system. Numerical results indicate that the VFC and H control methods can effectively suppress the large amplitude vibration of the composite lattice sandwich plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. McShane, G.J., Radford, D.D., Deshpande, V.S., Fleck, N.A.: The response of clamped sandwich plates with lattice cores subjected to shock loading. Eur. J. Mech. A Solids 25(2), 215–229 (2006)

    MATH  Google Scholar 

  2. Feng, L.J., Wu, L.Z., Yu, G.C.: An Hourglass truss lattice structure and its mechanical performances. Mater. Des. 99, 581–591 (2016)

    Google Scholar 

  3. Xu, G.D., Wang, Z.H., Zeng, T., Cheng, S., Fang, D.N.: Mechanical response of carbon/epoxy composite sandwich structures with three-dimensional corrugated cores. Compos. Sci. Technol. 156, 296–304 (2018)

    Google Scholar 

  4. Arunkumar, M.P., Pitchaimani, J., Gangadharan, K.V., Leninbabu, M.C.: Vibro-acoustic response and sound transmission loss characteristics of truss core sandwich panel filled with foam. Aerosp. Sci. Technol. 78, 1–11 (2018)

    Google Scholar 

  5. Zhang, X.Y., Zhou, H., Shi, W.H., Zeng, F.M., Zeng, H.Z., Chen, G.: Vibration tests of 3D printed satellite structure made of lattice sandwich panels. AIAA J. 56(10), 4213–4217 (2018)

    Google Scholar 

  6. Peng, L.X., Yan, S.T., Mo, G.K., Zhang, X.: Free vibration analysis of corrugated-core sandwich plates using a meshfree Galerkin method based on the first-order shear deformation theory. Int. J. Mech. Sci. 78, 8–18 (2014)

    Google Scholar 

  7. Arunkumar, M.P., Jagadeesh, M., Pitchaimani, J., Gangadharan, K.V., Lenin Babu, M.C.: Sound radiation and transmission loss characteristics of a honeycomb sandwich panel with composite facings: effect of inherent material damping. J. Sound Vib. 383, 221–232 (2016)

    Google Scholar 

  8. Shen, C., Xin, F.X., Lu, T.J.: Theoretical model for sound transmission through finite sandwich structures with corrugated core. Int. J. Non Linear Mech. 47(10), 1066–1072 (2012)

    Google Scholar 

  9. Li, X.D., Xiong, J., Ma, L., Wu, L.Z., Yan, X.Q.: Effect of vacuum thermal cycling on the compression and shear performance of composite sandwich structures containing pyramidal truss cores. Compos. Sci. Technol. 158, 67–78 (2018)

    Google Scholar 

  10. Xu, G.D., Yang, F., Zeng, T., Cheng, S., Wang, Z.H.: Bending behavior of graded corrugated truss core composite sandwich beams. Compos. Struct. 138, 342–351 (2016)

    Google Scholar 

  11. Wu, X.Q., Xiao, K.L., Yin, Q.Y., Zhong, F.C., Huang, C.G.: Experimental study on dynamic compressive behaviour of sandwich panel with shear thickening fluid filled pyramidal lattice truss core. Int. J. Mech. Sci. 138, 467–475 (2018)

    Google Scholar 

  12. Queheillalt, D.T., Murty, Y., Wadley, H.N.G.: Mechanical properties of an extruded pyramidal lattice truss sandwich structure. Scr. Mater. 58(1), 76–79 (2008)

    Google Scholar 

  13. Mahi, A., Tounsi, A.: A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39(9), 2489–2508 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Wu, Q.Q., Gao, Y., Wei, X.Y., Mousanezhad, D., Ma, L., Vaziri, A., Xiong, J.: Mechanical properties and failure mechanisms of sandwich panels with ultra-lightweight three-dimensional hierarchical lattice cores. Int. J. Solids Struct. 132, 171–187 (2018)

    Google Scholar 

  15. Liu, J.G., Pattofatto, S., Fang, D.N., Lu, F.Y., Zhao, H.: Impact strength enhancement of aluminum tetrahedral lattice truss core structures. Int. J. Impact Eng. 79, 3–13 (2015)

    Google Scholar 

  16. Feng, L.J., Xiong, J., Yang, L.H., Yu, G.C., Yang, W., Wu, L.Z.: Shear and bending performance of new type enhanced lattice truss structures. Int. J. Mech. Sci. 134, 589–598 (2017)

    Google Scholar 

  17. Li, C., Shen, H.S., Wang, H.: Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core. Nonlinear Dyn. 100(4), 3235–3252 (2020)

    Google Scholar 

  18. Yang, J.S., Ma, L., Schmidt, R., Qi, G., Schröder, K.U., Xiong, J., Wu, L.Z.: Hybrid lightweight composite pyramidal truss sandwich panels with high damping and stiffness efficiency. Compos. Struct. 148, 85–96 (2016)

    Google Scholar 

  19. Li, D.H., Wang, R.P., Qian, R.L., Liu, Y., Qing, G.H.: Static response and free vibration analysis of the composite sandwich structures with multi-layer cores. Int. J. Mech. Sci. 111, 101–115 (2016)

    Google Scholar 

  20. Li, Q., Yang, D.Q.: Mechanical and acoustic performance of sandwich panels with hybrid cellular cores. J. Vib. Acoust. 140, 061016 (2018)

    Google Scholar 

  21. Yang, H.S., Li, H.R., Zheng, H.: A structural-acoustic optimization of two-dimensional sandwich plates with corrugated cores. J. Vib. Control 23(18), 3007–3022 (2017)

    MathSciNet  Google Scholar 

  22. Li, Z.Y., Ma, T.X., Wang, Y.Z., Li, F.M., Zhang, C.Z.: Vibration isolation by novel meta-design of pyramid-core lattice sandwich structures. J. Sound Vib. 480, 115377 (2020)

    Google Scholar 

  23. Chai, Y.Y., Song, Z.G., Li, F.M.: Investigations on the influences of elastic foundations on the aerothermoelastic flutter and thermal buckling properties of lattice sandwich panels in supersonic airflow. Acta Astronaut. 140, 176–189 (2017a)

    Google Scholar 

  24. Song, Z.G., Li, F.M.: Aerothermoelastic analysis of lattice sandwich composite panels in supersonic airflow. Meccanica 51(4), 877–891 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Yuan, Z., Kardomateas, G.A., Frostig, Y.: Geometric nonlinearity effects in the response of sandwich wide panels. J. Appl. Mech. 83(9), 091008 (2016)

    Google Scholar 

  26. Mahmoudkhani, S., Haddadpour, H., Navazi, H.M.: The effects of nonlinearities on the vibration of viscoelastic sandwich plates. Int. J. Non Linear Mech. 62, 41–57 (2014)

    Google Scholar 

  27. Duc, N.D., Seung-Eock, K., Tuan, N.D., Tran, P., Khoa, N.D.: New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer. Aerosp. Sci. Technol. 70, 396–404 (2017)

    Google Scholar 

  28. Yao, G., Li, F.M.: Nonlinear primary resonances of lattice sandwich beams with pyramidal truss core and viscoelastic surfaces. Acta Mech. 229(10), 4091–4100 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Amabili, M.: Nonlinear vibrations of viscoelastic rectangular plates. J. Sound Vib. 362, 142–156 (2016)

    Google Scholar 

  30. Amabili, M.: Nonlinear damping in large-amplitude vibrations: modelling and experiments. Nonlinear Dyn. 93, 5–18 (2018a)

    Google Scholar 

  31. Amabili, M.: Derivation of nonlinear damping from viscoelasticity in case of nonlinear vibrations. Nonlinear Dyn. 97(3), 1785–1797 (2019)

    MathSciNet  Google Scholar 

  32. Amabili, M.: Nonlinear damping in nonlinear vibrations of rectangular plates: derivation from viscoelasticity and experimental validation. J. Mech. Phys. Solids 118, 275–292 (2018b)

    MathSciNet  MATH  Google Scholar 

  33. Chen, D., Kitipornchai, S., Yang, J.: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin Wall. Struct. 107, 39–48 (2016)

    Google Scholar 

  34. Hasheminejad, S.M., Motaaleghi, M.A.: Aeroelastic analysis and active flutter suppression of an electro-rheological sandwich cylindrical panel under yawed supersonic flow. Aerosp. Sci. Technol. 42, 118–127 (2015)

    Google Scholar 

  35. Abdeljaber, O., Avci, O., Inman, D.J.: Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks. J. Sound Vib. 363, 33–53 (2016)

    Google Scholar 

  36. Song, Z.G., Li, F.M.: Aeroelastic analysis and active flutter control of nonlinear lattice sandwich beams. Nonlinear Dyn. 76(1), 57–68 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Oveisi, A., Shakeri, R.: Robust reliable control in vibration suppression of sandwich circular plates. Eng. Struct. 116, 1–11 (2016)

    Google Scholar 

  38. Zippo, A., Ferrari, G., Amabili, M., Barbieri, M., Pellicano, F.: Active vibration control of a composite sandwich plate. Compos. Struct. 128, 100–114 (2015)

    Google Scholar 

  39. Ferrari, G., Amabili, M.: Active vibration control of a sandwich plate by non-collocated positive position feedback. J. Sound Vib. 342, 44–56 (2015)

    Google Scholar 

  40. Rostami, R., Mohammadimehr, M.: Vibration control of sandwich plate–reinforced nanocomposite face sheet and porous core integrated with sensor and actuator layers using perturbation method. J. Vib. Control (2020). https://doi.org/10.1177/1077546320948330

    Article  Google Scholar 

  41. Chai, Y.Y., Li, F.M., Song, Z.G., Zhang, C.Z.: Aerothermoelastic flutter analysis and active vibration suppression of nonlinear composite laminated panels with time-dependent boundary conditions in supersonic airflow. J. Intell. Mater. Syst. Struct. 29(4), 653–668 (2018)

    Google Scholar 

  42. Chai, Y.Y., Song, Z.G., Li, F.M.: Active aerothermoelastic flutter suppression of composite laminated panels with time-dependent boundaries. Compos. Struct. 179, 61–76 (2017b)

    Google Scholar 

  43. Shao, X., Fu, Y., Chen, Y.: Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field. Smart Mater. Struct. 24(5), 055023 (2015)

    Google Scholar 

  44. Phung-Van, P., Nguyen, L.B., Tran, L.V., Dinh, T.D., Thai, C.H., Bordas, S.P.A., Abdel-Wahab, M., Nguyen-Xuan, H.: An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. Int. J. Non Linear Mech. 76, 190–202 (2015)

    Google Scholar 

  45. Oveisi, A., Nestorović, T.: Transient response of an active nonlinear sandwich piezolaminated plate. Commun. Nonlinear Sci. Numer. Simul. 45, 158–175 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, Y.W., Su, C., Ni, Z.Y., Zang, J., Chen, L.Q.: A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control. Compos. Struct. 221, 110875 (2019)

    Google Scholar 

  47. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–3107 (2020)

    Google Scholar 

  48. Yasin, M.Y., Kapuria, S.: Influence of piezoelectric nonlinearity on active vibration suppression of smart laminated shells using strong field actuation. J. Vib. Control 24(3), 505–526 (2018)

    MathSciNet  Google Scholar 

  49. Liu, X., Cai, G.P., Peng, F.J., Zhang, H.: Active control of large-amplitude vibration of a membrane structure. Nonlinear Dyn. 93, 629–642 (2018)

    MATH  Google Scholar 

  50. Zhang, S.Q., Schmidt, R., Müller, P.C., Qin, X.S.: Disturbance rejection control for vibration suppression of smart beams and plates under a high frequency excitation. J. Sound Vib. 353, 19–37 (2015)

    Google Scholar 

  51. Lu, Y., Shao, Q., Amabili, M., Yue, H., Guo, H.: Nonlinear vibration control effects of membrane structures with in-plane PVDF actuators: a parametric study. Int. J. Non Linear Mech. 122, 103466 (2020)

    Google Scholar 

  52. Moghaddam, S.M.F., Ahmadi, H.: Active vibration control of truncated conical shell under harmonic excitation using piezoelectric actuator. Thin Wall. Struct. 151, 106642 (2020)

    Google Scholar 

  53. Lu, S.F., Jiang, Y., Zhang, W., Song, X.J.: Vibration suppression of cantilevered piezoelectric laminated composite rectangular plate subjected to aerodynamic force in hygrothermal environment. Eur. J. Mech. A Solids 83, 104002 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Allen, H.G.: Analysis and Design of Structural Sandwich Panels. Pergamon Press, Oxford (1969)

    Google Scholar 

  55. Chai, Y.Y., Li, F.M., Song, Z.G.: Nonlinear vibration behaviors of composite laminated plates with time-dependent base excitation and boundary conditions. Int. J. Nonlinear Sci. Numer. Simul. 18(2), 145–161 (2017)

    MathSciNet  MATH  Google Scholar 

  56. Song, Z.G., Zhang, L.W., Liew, K.M.: Active vibration control of CNT reinforced functionally graded plates based on a higher-order shear deformation theory. Int. J. Mech. Sci. 105, 90–101 (2016)

    Google Scholar 

  57. Green, M., Limebeer, D.J.N.: Linear Robust Control. Courier Dover, New York (2012)

    MATH  Google Scholar 

  58. Liu, T.X., Hua, H.X., Zhang, Z.: Robust control of plate vibration via active constrained layer damping. Thin Wall. Struct. 42(3), 427–448 (2004)

    Google Scholar 

  59. Kar, I.N., Miyakura, T., Seto, K.: Bending and torsional vibration control of a flexible plate structure using H-based robust control law. IEEE Trans. Control Syst. Technol. 8(3), 545–553 (2000)

    Google Scholar 

  60. Oh, I.K., Lee, I.: Supersonic flutter suppression of piezolaminated cylindrical panels based on multifield layerwise theory. J. Sound Vib. 291, 1186–1201 (2006)

    Google Scholar 

  61. Karthick, S., Kumar, K.S., Mohan, S.: Relative analysis of controller effectiveness for vertical plane control of an autonomous underwater vehicle. In: OCEANS-Shanghai IEEE, pp. 1–6 (2016)

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Project-Nos. 11761131006, 11572007, 11802069) and the German Research Foundation (DFG, Project-No. ZH 15/30-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

The matrices M and Kl in Eq. (21) can be written as follows

$$ {\mathbf{M}} = \left[ {\begin{array}{*{20}c} {{\mathbf{M}}_{uu} } & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{M}}_{vv} } & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{M}}_{ww} } & {{\mathbf{M}}_{wx} } & {{\mathbf{M}}_{wy} } \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{M}}_{wx}^{{\text{T}}} } & {{\mathbf{M}}_{xx} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{M}}_{wy}^{{\text{T}}} } & {\mathbf{0}} & {{\mathbf{M}}_{yy} } \\ \end{array} } \right], $$
(42)

where

$$ {\mathbf{M}}_{uu} = (\rho_{c} h_{c} + 2\rho_{f} h_{f} + 2\rho_{p} h_{p} )\int_{0}^{a} {\int_{0}^{b} {{\mathbf{\zeta \zeta }}^{{\text{T}}} {\text{d}}x{\text{d}}y} } , $$
(43)
$$ {\mathbf{M}}_{vv} = (\rho_{c} h_{c} + 2\rho_{f} h_{f} + 2\rho_{p} h_{p} )\int_{0}^{a} {\int_{0}^{b} {{\mathbf{\varsigma \varsigma }}^{{\text{T}}} {\text{d}}x{\text{d}}y} } , $$
(44)
$${\mathbf{M}}_{ww} = (\rho_{c} h_{c} + 2\rho_{f} h_{f} + 2\rho_{p} h_{p} )\int_{0}^{a} {\int_{0}^{b} {{\mathbf{\xi \xi }}^{{\text{T}}} {\text{d}}x{\text{d}}y} } + \left( {\frac{1}{18}\rho_{p} h_{p} h_{c}^{2} - \frac{1}{3}\rho_{p} h_{c} h_{p}^{2} + 2} \right.\rho_{p} h_{p} h_{f}^{2} + 2\rho_{p} h_{f} h_{p}^{2} \left. { + \frac{1}{18}\rho_{f} h_{f} h_{c}^{2} - \frac{1}{3}\rho_{f} h_{c} h_{f}^{2} + \frac{1}{252}\rho_{c} h_{c}^{3} + \frac{2}{3}\rho_{f} h_{f}^{3} + \frac{2}{3}\rho_{p} h_{p}^{3} - \frac{2}{3}\rho_{p} h_{c} h_{f} h_{p} } \right)\int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial {{\varvec{\upxi}}}}}{\partial x}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x} + \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}} \right){\text{d}}x{\text{d}}y} } , $$
(45)
$$ {\mathbf{M}}_{xx} = \left( {\frac{2}{9}\rho_{p} h_{p} h_{c}^{2} + \frac{2}{9}\rho_{f} h_{f} h_{c}^{2} + \frac{17}{{315}}\rho_{c} h_{c}^{3} } \right)\int_{0}^{a} {\int_{0}^{b} {{\mathbf{\eta \eta }}^{{\text{T}}} {\text{d}}x{\text{d}}y} } , $$
(46)
$$ {\mathbf{M}}_{yy} = \left( {\frac{2}{9}\rho_{p} h_{p} h_{c}^{2} + \frac{2}{9}\rho_{f} h_{f} h_{c}^{2} + \frac{17}{{315}}\rho_{c} h_{c}^{3} } \right)\int_{0}^{a} {\int_{0}^{b} {{\mathbf{\chi \chi }}^{{\text{T}}} {\text{d}}x{\text{d}}y} } , $$
(47)
$$ {\mathbf{M}}_{wx} = \left. {\left( {\frac{2}{3}\rho_{p} h_{c} h_{f} h_{p} - \frac{4}{315}\rho_{c} h_{c}^{3} } \right. - \frac{1}{9}\rho_{f} h_{f} h_{c}^{2} + \frac{1}{3}\rho_{f} h_{c} h_{f}^{2} - \frac{1}{9}\rho_{p} h_{p} h_{c}^{2} + \frac{1}{3}\rho_{p} h_{c} h_{p}^{2} } \right)\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upxi}}}}}{\partial x}{{\varvec{\upeta}}}^{{\text{T}}} {\text{d}}x{\text{d}}y} } , $$
(48)
$$ {\mathbf{M}}_{wy} = \left. {\left( {\frac{2}{3}\rho_{p} h_{c} h_{f} h_{p} - \frac{4}{315}\rho_{c} h_{c}^{3} } \right. - \frac{1}{9}\rho_{f} h_{f} h_{c}^{2} + \frac{1}{3}\rho_{f} h_{c} h_{f}^{2} - \frac{1}{9}\rho_{p} h_{p} h_{c}^{2} + \frac{1}{3}\rho_{p} h_{c} h_{p}^{2} } \right)\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{{\varvec{\upchi}}}^{{\text{T}}} {\text{d}}x{\text{d}}y} } , $$
(49)

and

$$ {\mathbf{K}}_{l} = \left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{uu} } & {{\mathbf{K}}_{uv} } & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {{\mathbf{K}}_{uv}^{{\text{T}}} } & {{\mathbf{K}}_{vv} } & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{K}}_{ww} } & {{\mathbf{K}}_{wx} } & {{\mathbf{K}}_{wy} } \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{K}}_{wx}^{{\text{T}}} } & {{\mathbf{K}}_{xx} } & {{\mathbf{K}}_{xy} } \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{K}}_{wy}^{{\text{T}}} } & {{\mathbf{K}}_{xy}^{{\text{T}}} } & {{\mathbf{K}}_{yy} } \\ \end{array} } \right], $$
(50)

where

$$ {\mathbf{K}}_{uu} = 2A_{16} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial {{\varvec{\upzeta}}}}}{\partial x}\frac{{\partial {{\varvec{\upzeta}}}^{{\text{T}}} }}{\partial y} + \frac{{\partial {{\varvec{\upzeta}}}}}{\partial y}\frac{{\partial {{\varvec{\upzeta}}}^{{\text{T}}} }}{\partial x}} \right){\text{d}}x{\text{d}}y} } + 2A_{66} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upzeta}}}}}{\partial y}\frac{{\partial {{\varvec{\upzeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + 2A_{11} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upzeta}}}}}{\partial x}\frac{{\partial {{\varvec{\upzeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} }+ 2P_{11} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upzeta}}}}}{\partial x}\frac{{\partial {{\varvec{\upzeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + 2P_{66} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upzeta}}}}}{\partial y}\frac{{\partial {{\varvec{\upzeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } , $$
(51)
$$ {\mathbf{K}}_{uv} = 2A_{16} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upzeta}}}}}{\partial x}\frac{{\partial {\mathbf{\varsigma }}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + 2A_{66} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upzeta}}}}}{\partial y}\frac{{\partial {\mathbf{\varsigma }}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + 2A_{12} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upzeta}}}}}{\partial x}\frac{{\partial {\mathbf{\varsigma }}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + 2A_{26} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upzeta}}}}}{\partial y}\frac{{\partial {\mathbf{\varsigma }}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} }+ 2P_{12} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upzeta}}}}}{\partial x}\frac{{\partial {\mathbf{\varsigma }}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + 2P_{66} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upzeta}}}}}{\partial y}\frac{{\partial {\mathbf{\varsigma }}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } , $$
(52)
$${\mathbf{K}}_{vv} = 2A_{26} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial {\mathbf{\varsigma }}}}{\partial y}\frac{{\partial {\mathbf{\varsigma }}^{{\text{T}}} }}{\partial x} + \frac{{\partial {\mathbf{\varsigma }}}}{\partial x}\frac{{\partial {\mathbf{\varsigma }}^{{\text{T}}} }}{\partial y}} \right){\text{d}}x{\text{d}}y} } + 2A_{22} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial y}\frac{{\partial {\mathbf{\varsigma }}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + 2A_{66} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial x}\frac{{\partial {\mathbf{\varsigma }}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + 2P_{11} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial y}\frac{{\partial {\mathbf{\varsigma }}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + 2P_{66} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial x}\frac{{\partial {\mathbf{\varsigma }}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } , $$
(53)
$$ {\mathbf{K}}_{ww} = \frac{8}{9}A_{12} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} } + \frac{16}{9}A_{16} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} } - \frac{8}{3}B_{12} h_{c} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} } - \frac{16}{3}B_{16} h_{c} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} }+ \frac{16}{9}A_{26} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }}} \right){\text{d}}x{\text{d}}y} } - \frac{16}{3}B_{26} h_{c} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }}} \right){\text{d}}x{\text{d}}y} }+ \frac{8}{15}G_{c} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upxi}}}}}{\partial x}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{8}{15}G_{c} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upxi}}}}}{\partial y}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{32}{9}A_{66} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } - \frac{32}{3}B_{66} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } + 2D_{12} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} } + 4D_{16} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} } + 4D_{26} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }}} \right){\text{d}}x{\text{d}}y} } + \frac{8}{9}A_{11} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } - \frac{8}{3}B_{11} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } + \frac{8}{9}A_{22} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} }- \frac{8}{3}B_{22} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } + 2D_{22} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } + 8D_{66} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } + 2D_{11} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } - \frac{2}{3}P_{12} h_{c} h_{f} h_{p} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} } + \frac{2}{9}P_{66} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } - \frac{1}{18}P_{12} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} } - \frac{2}{3}P_{11} h_{c} h_{f} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } - \frac{2}{3}P_{11} h_{c} h_{f} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } - \frac{8}{3}P_{66} h_{c} h_{f} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } - \frac{1}{3}P_{12} h_{c} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} } + 2P_{12} h_{p} h_{f}^{2} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} } + 2P_{12} h_{f} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} } + \frac{2}{3}P_{11} h_{p}^{3} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } + \frac{2}{3}P_{11} h_{p}^{3} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} }+ \frac{8}{3}P_{66} h_{p}^{3} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } - \frac{1}{3}P_{11} h_{c} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } + 2P_{11} h_{p} h_{f}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} }+ 2P_{11} h_{f} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } - \frac{1}{3}P_{11} h_{c} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } + 2P_{11} h_{p} h_{f}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } + 2P_{11} h_{f} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } - \frac{4}{3}P_{66} h_{c} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } + 8P_{66} h_{p} h_{f}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } + 8P_{66} h_{f} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } + \frac{2}{3}P_{12} h_{p}^{3} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }} + \frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} } + \frac{1}{18}P_{11} h_{p} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } + \frac{1}{18}P_{11} h_{p} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial^{2} {{\varvec{\upxi}}}^{{\text{T}}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } , $$
(54)
$${\mathbf{K}}_{wx} = - \frac{4}{9}A_{11} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } - \frac{4}{9}A_{12} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } - \frac{8}{9}A_{16} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} }+ \frac{2}{3}B_{11} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{2}{3}B_{12} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{4}{3}B_{16} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} }- \frac{4}{9}A_{16} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } - \frac{4}{9}A_{26} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } - \frac{8}{9}A_{66} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{2}{3}B_{16} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{2}{3}B_{26} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{4}{3}B_{66} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} }+ \frac{8}{15}G_{c} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upxi}}}}}{\partial x}{{\varvec{\upeta}}}^{{\text{T}}} {\text{d}}x{\text{d}}y} } + \frac{2}{3}P_{11} h_{c} h_{f} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{2}{3}P_{12} h_{c} h_{f} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{4}{3}P_{66} h_{c} h_{f} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } - \frac{2}{9}P_{66} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } - \frac{1}{9}P_{11} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } - \frac{1}{9}P_{12} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{1}{3}P_{11} h_{c} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} }+ \frac{1}{3}P_{12} h_{c} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{2}{3}P_{66} h_{c} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } , $$
(55)
$${\mathbf{K}}_{wy} = - \frac{4}{9}A_{12} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } - \frac{4}{9}A_{16} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } - \frac{4}{9}A_{22} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} }- \frac{8}{9}A_{26} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{2}{3}B_{12} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{2}{3}B_{22} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{4}{3}B_{26} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } - \frac{4}{9}A_{26} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } - \frac{8}{9}A_{66} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} }+ \frac{2}{3}B_{16} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{2}{3}B_{26} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{4}{3}B_{66} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} }+ \frac{8}{15}G_{c} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{{\varvec{\upchi}}}^{{\text{T}}} {\text{d}}x{\text{d}}y} } + \frac{2}{3}P_{12} h_{c} h_{f} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{2}{3}P_{11} h_{c} h_{f} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{4}{3}P_{66} h_{c} h_{f} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } - \frac{2}{9}P_{66} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } - \frac{1}{9}P_{12} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } - \frac{1}{9}P_{11} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{1}{3}P_{12} h_{c} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} }+ \frac{1}{3}P_{11} h_{c} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{2}{3}P_{66} h_{c} h_{p}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{\partial x\partial y}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } , $$
(56)
$$ {\mathbf{K}}_{xx} = \frac{2}{9}A_{16} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial {{\varvec{\upeta}}}}}{\partial x}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial y} + \frac{{\partial {{\varvec{\upeta}}}}}{\partial y}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}} \right){\text{d}}x{\text{d}}y} } + \frac{8}{15}G_{c} h_{c} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{\eta \eta }}^{{\text{T}}} {\text{d}}x{\text{d}}y} } + \frac{2}{9}A_{66} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upeta}}}}}{\partial y}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{2}{9}A_{11} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upeta}}}}}{\partial x}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{2}{9}P_{11} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upeta}}}}}{\partial x}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{2}{9}P_{66} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upeta}}}}}{\partial y}\frac{{\partial {{\varvec{\upeta}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } , $$
(57)
$$ {\mathbf{K}}_{xy} = \frac{2}{9}A_{12} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upeta}}}}}{\partial x}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{2}{9}A_{16} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upeta}}}}}{\partial x}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{2}{9}A_{26} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upeta}}}}}{\partial y}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{2}{9}A_{66} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upeta}}}}}{\partial x}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{2}{9}P_{66} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upeta}}}}}{\partial y}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{2}{9}P_{12} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upeta}}}}}{\partial x}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } , $$
(58)
$$ {\mathbf{K}}_{yy} = \frac{2}{9}A_{26} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial {{\varvec{\upchi}}}}}{\partial x}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y} + \frac{{\partial {{\varvec{\upchi}}}}}{\partial y}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}} \right){\text{d}}x{\text{d}}y} } + \frac{8}{15}G_{c} h_{c} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{\chi \chi }}^{{\text{T}}} {\text{d}}x{\text{d}}y} } + \frac{2}{9}A_{66} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upchi}}}}}{\partial x}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } + \frac{2}{9}A_{22} h_{c}^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upchi}}}}}{\partial y}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{2}{9}P_{11} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upchi}}}}}{\partial y}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial y}{\text{d}}x{\text{d}}y} } + \frac{2}{9}P_{66} h_{c}^{2} h_{p} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upchi}}}}}{\partial x}\frac{{\partial {{\varvec{\upchi}}}^{{\text{T}}} }}{\partial x}{\text{d}}x{\text{d}}y} } . $$
(59)

The nonlinear stiffness matrix Kn is complex, and it can be obtained by performing the variational operations on the nonlinear part of the potential energy Unon, which can be written as follows

$$U_{non} = 2A_{16} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{g}}^{{\text{T}}} \frac{{\partial {{\varvec{\upzeta}}}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{\text{d}}x{\text{d}}y + 2A_{26} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{r}}^{{\text{T}}} \frac{{\partial {\mathbf{\varsigma }}}}{\partial y}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{\text{d}}x{\text{d}}y + A_{26} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{s}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{s}}{\text{d}}x{\text{d}}y + A_{26} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{r}}^{{\text{T}}} \frac{{\partial {\mathbf{\varsigma }}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{\text{d}}x{\text{d}}y+ A_{26} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{g}}^{{\text{T}}} \frac{{\partial {{\varvec{\upzeta}}}}}{\partial y}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{\text{d}}x{\text{d}}y + A_{16} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{s}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{s}}{\text{d}}x{\text{d}}y+ A_{22} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{r}}^{{\text{T}}} \frac{{\partial {\mathbf{\varsigma }}}}{\partial y}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{\text{d}}x{\text{d}}y + A_{16} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{r}}^{{\text{T}}} \frac{{\partial {\mathbf{\varsigma }}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}{\text{d}}x{\text{d}}y+ A_{16} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{g}}^{{\text{T}}} \frac{{\partial {{\varvec{\upzeta}}}}}{\partial y}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}{\text{d}}x{\text{d}}y + A_{12} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{r}}^{{\text{T}}} \frac{{\partial {\mathbf{\varsigma }}}}{\partial y}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}{\text{d}}x{\text{d}}y+ A_{12} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{g}}^{{\text{T}}} \frac{{\partial {{\varvec{\upzeta}}}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{\text{d}}x{\text{d}}y + A_{11} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{g}}^{{\text{T}}} \frac{{\partial {{\varvec{\upzeta}}}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}{\text{d}}x{\text{d}}y+ A_{66} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{s}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{s}}{\text{d}}x{\text{d}}y + \frac{1}{2}A_{12} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{s}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{s}}{\text{d}}x{\text{d}}y+ 2A_{66} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{r}}^{{\text{T}}} \frac{{\partial {\mathbf{\varsigma }}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{\text{d}}x{\text{d}}y + 2A_{66} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{g}}^{{\text{T}}} \frac{{\partial {{\varvec{\upzeta}}}}}{\partial y}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{\text{d}}x{\text{d}}y+ \frac{1}{4}A_{22} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{s}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{s}}{\text{d}}x{\text{d}}y + \frac{1}{4}A_{11} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{s}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{s}}{\text{d}}x{\text{d}}y+ P_{12} h_{p} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{g}}^{{\text{T}}} \frac{{\partial {{\varvec{\upzeta}}}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{\text{d}}x{\text{d}}y + P_{11} h_{p} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{g}}^{{\text{T}}} \frac{{\partial {{\varvec{\upzeta}}}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}{\text{d}}x{\text{d}}y + \frac{1}{2}P_{12} h_{p} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{s}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{s}}{\text{d}}x{\text{d}}y + P_{11} h_{p} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{r}}^{{\text{T}}} \frac{{\partial {\mathbf{\varsigma }}}}{\partial y}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{\text{d}}x{\text{d}}y+ P_{66} h_{p} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{s}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{s}}{\text{d}}x{\text{d}}y + P_{12} h_{p} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{r}}^{{\text{T}}} \frac{{\partial {\mathbf{\varsigma }}}}{\partial y}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}{\text{d}}x{\text{d}}y + \frac{1}{4}P_{11} h_{p} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{s}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial y}{\mathbf{s}}{\text{d}}x{\text{d}}y + \frac{1}{4}P_{11} h_{p} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{s}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial x}\frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{s}}{\text{d}}x{\text{d}}y+ 2P_{66} h_{p} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{g}}^{{\text{T}}} \frac{{\partial {{\varvec{\upzeta}}}}}{\partial y}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{\text{d}}x{\text{d}}y + 2P_{66} h_{p} \int_{0}^{a} {\int_{0}^{b} {{\mathbf{r}}^{{\text{T}}} \frac{{\partial {\mathbf{\varsigma }}}}{\partial x}} } \frac{{\partial {{\varvec{\upxi}}}^{{\text{T}}} }}{\partial x}{\mathbf{ss}}^{{\text{T}}} \frac{{\partial {{\varvec{\upxi}}}}}{\partial y}{\text{d}}x{\text{d}}y. $$
(60)

The matrix Ka in Eq. (21) can be expressed as

$$ {\mathbf{K}}_{a} = [\begin{array}{*{20}c} {{\mathbf{K}}_{ua}^{{\text{T}}} } & {{\mathbf{K}}_{va}^{{\text{T}}} } & {{\mathbf{K}}_{wa}^{{\text{T}}} } & {{\mathbf{K}}_{xa}^{{\text{T}}} } & {{\mathbf{K}}_{ya}^{{\text{T}}} } \\ \end{array} ], $$
(61)

where

$$ {\mathbf{K}}_{ua} = e_{31} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upzeta}}}}}{\partial x}} } {\text{d}}x{\text{d}}y,{\mathbf{K}}_{va} = e_{32} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial y}} } {\text{d}}x{\text{d}}y, $$
(62)
$$ {\mathbf{K}}_{ua} = e_{31} \left( {\frac{1}{2}h_{p} + h_{f} - \frac{1}{6}h_{c} } \right)\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial x^{2} }}} } {\text{d}}x{\text{d}}y + e_{32} \left( {\frac{1}{2}h_{p} + h_{f} - \frac{1}{6}h_{c} } \right)\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {{\varvec{\upxi}}}}}{{\partial y^{2} }}} } {\text{d}}x{\text{d}}y + e_{31} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upxi}}}}}{\partial x}\frac{{\partial {{\varvec{\upxi}}}^{{\mathbf{T}}} }}{\partial x}} } {\mathbf{s}}{\text{d}}x{\text{d}}y + e_{32} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upxi}}}}}{\partial y}\frac{{\partial {{\varvec{\upxi}}}^{{\mathbf{T}}} }}{\partial y}} } {\mathbf{s}}{\text{d}}x{\text{d}}y, $$
(63)
$$ {\mathbf{K}}_{xa} = \frac{1}{3}e_{31} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upeta}}}}}{\partial x}} } {\text{d}}x{\text{d}}y,{\mathbf{K}}_{ya} = \frac{1}{3}e_{32} h_{c} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {{\varvec{\upchi}}}}}{\partial y}} } {\text{d}}x{\text{d}}y. $$
(64)

Finally, the force or load vector on the right-hand side of Eq. (21) can be written as

$$ {\mathbf{F}} = [\begin{array}{*{20}c} 0 & 0 & {{\mathbf{F}}_{w}^{{\text{T}}} } & 0 & 0 \\ \end{array} ], $$
(65)

where

$$ {\mathbf{F}}_{w} = \int_{0}^{a} {\int_{0}^{b} {{\varvec{\upxi}}} } {\text{d}}x{\text{d}}y. $$
(66)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Y., Li, F., Song, Z. et al. Analysis and active control of nonlinear vibration of composite lattice sandwich plates. Nonlinear Dyn 102, 2179–2203 (2020). https://doi.org/10.1007/s11071-020-06059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06059-7

Keywords

Navigation